Reza Shakerian, Meisam Yadollahzadeh-Tabari, Seyed Yaser Bozorgi Rad
{"title":"Proposing a Fuzzy Soft-max-based classifier in a hybrid deep learning architecture for human activity recognition","authors":"Reza Shakerian, Meisam Yadollahzadeh-Tabari, Seyed Yaser Bozorgi Rad","doi":"10.1049/bme2.12066","DOIUrl":null,"url":null,"abstract":"<p>Human Activity Recognition (HAR) is the process of identifying and analysing activities performed by a person (or persons). This paper proposes an efficient HAR system based on wearable sensors that uses deep learning techniques. The proposed HAR takes the advantage of staking Convolutional Neural Network and Long Short-Term (LSTM), for extracting the high-level features of the sensors data and for learning the time-series behaviour of the abstracted data, respectively. This paper proposed a Fuzzy Soft-max classifier for the dense layer which classifies the output of LSTM Blocks to the associated activity classes. The authors’ decision for proposing this classifier was because sensor data related to the resembling human activities, such as walking and running or opening door and closing door, are often very similar to each other. For this reason, the authors expect that adding fuzzy inference power to the standard Soft-max classifier will increase its accuracy for distinguishing between similar activities. The authors were also interested in considering a post-processing module that considers activity classification over a longer period. Using the proposed Fuzzy Soft-max classifier and by the post-processing technique, the authors were able to reach the 97.03 and 85.1 rates of accuracy for the PAMAP2 and Opportunity dataset, respectively.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 2","pages":"171-186"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12066","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12066","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
Human Activity Recognition (HAR) is the process of identifying and analysing activities performed by a person (or persons). This paper proposes an efficient HAR system based on wearable sensors that uses deep learning techniques. The proposed HAR takes the advantage of staking Convolutional Neural Network and Long Short-Term (LSTM), for extracting the high-level features of the sensors data and for learning the time-series behaviour of the abstracted data, respectively. This paper proposed a Fuzzy Soft-max classifier for the dense layer which classifies the output of LSTM Blocks to the associated activity classes. The authors’ decision for proposing this classifier was because sensor data related to the resembling human activities, such as walking and running or opening door and closing door, are often very similar to each other. For this reason, the authors expect that adding fuzzy inference power to the standard Soft-max classifier will increase its accuracy for distinguishing between similar activities. The authors were also interested in considering a post-processing module that considers activity classification over a longer period. Using the proposed Fuzzy Soft-max classifier and by the post-processing technique, the authors were able to reach the 97.03 and 85.1 rates of accuracy for the PAMAP2 and Opportunity dataset, respectively.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues