A market basket analysis of the US auto-repair industry

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Business Analytics Pub Date : 2020-07-02 DOI:10.1080/2573234x.2020.1838958
Hilde Patron, Laureano Gomez
{"title":"A market basket analysis of the US auto-repair industry","authors":"Hilde Patron, Laureano Gomez","doi":"10.1080/2573234x.2020.1838958","DOIUrl":null,"url":null,"abstract":"ABSTRACT Market basket analysis (MBA), or the mining of transactional data to uncover association rules, is a popular methodology used in managerial decision making. MBA is centered around three key parameters: support, confidence, and lift, and the choice of starting values for these parameters can have a significant impact on the results of the analysis. We develop a procedure in R around the Apriori algorithm to help in identifying lift maximising rules when the support covers a specified proportion. The procedure facilitates the choice of minimum parameters, eliminates redundancies, and organizes the resulting association rules into actionable formats. When applied to the US auto repair data, we find un-exploited bundling packages that can be added to the scheduled maintenance services of traditional marketing campaigns.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"9 1","pages":"79 - 92"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234x.2020.1838958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT Market basket analysis (MBA), or the mining of transactional data to uncover association rules, is a popular methodology used in managerial decision making. MBA is centered around three key parameters: support, confidence, and lift, and the choice of starting values for these parameters can have a significant impact on the results of the analysis. We develop a procedure in R around the Apriori algorithm to help in identifying lift maximising rules when the support covers a specified proportion. The procedure facilitates the choice of minimum parameters, eliminates redundancies, and organizes the resulting association rules into actionable formats. When applied to the US auto repair data, we find un-exploited bundling packages that can be added to the scheduled maintenance services of traditional marketing campaigns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国汽车修理行业的一篮子市场分析
市场篮子分析(MBA),或挖掘交易数据以发现关联规则,是一种用于管理决策的流行方法。MBA围绕着三个关键参数:支持、信心和提升,这些参数的起始值的选择会对分析结果产生重大影响。我们在R中围绕Apriori算法开发了一个过程,以帮助识别支撑覆盖特定比例时的升力最大化规则。该过程有助于选择最小参数,消除冗余,并将产生的关联规则组织为可操作的格式。当应用于美国汽车维修数据时,我们发现未开发的捆绑包可以添加到传统营销活动的定期维护服务中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
期刊最新文献
Exploring the relationship between YouTube video optimisation practices and video rankings for online marketing: a machine learning approach The era of business analytics: identifying and ranking the differences between business intelligence and data science from practitioners’ perspective using the Delphi method Intelligent decision support system using nested ensemble approach for customer churn in the hotel industry Introducing technological disruption: how breaking media attention on corporate events impacts online sentiment An adaptive and enhanced framework for daily stock market prediction using feature selection and ensemble learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1