Spin shuttling in a silicon double quantum dot

Florian Ginzel, A. Mills, J. Petta, G. Burkard
{"title":"Spin shuttling in a silicon double quantum dot","authors":"Florian Ginzel, A. Mills, J. Petta, G. Burkard","doi":"10.1103/PHYSREVB.102.195418","DOIUrl":null,"url":null,"abstract":"The transport of quantum information between different nodes of a quantum device is among the challenging functionalities of a quantum processor. In the context of spin qubits, this requirement can be met by coherent electron spin shuttling between semiconductor quantum dots. Here we theoretically study a minimal version of spin shuttling between two quantum dots. To this end, we analyze the dynamics of an electron during a detuning sweep in a silicon double quantum dot (DQD) occupied by one electron. Possibilities and limitations of spin transport are investigated. Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling and are included in our model. Interactions that couple the position, spin, and valley degrees of freedom open a number of avoided crossings in the spectrum allowing for diabatic transitions and interfering paths. The outcomes of single and repeated spin shuttling protocols are explored by means of numerical simulations and an approximate analytical model based on the solution of the Landau-Zener problem. We find that a spin infidelity as low as $1\\ensuremath{-}{F}_{s}\\ensuremath{\\lesssim}0.002$ with a relatively fast level velocity of $\\ensuremath{\\alpha}=600\\phantom{\\rule{0.16em}{0ex}}\\ensuremath{\\mu}{\\mathrm{eV}\\phantom{\\rule{0.16em}{0ex}}\\mathrm{ns}}^{\\ensuremath{-}1}$ is feasible for optimal choices of parameters or by making use of constructive interference.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Physical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.102.195418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The transport of quantum information between different nodes of a quantum device is among the challenging functionalities of a quantum processor. In the context of spin qubits, this requirement can be met by coherent electron spin shuttling between semiconductor quantum dots. Here we theoretically study a minimal version of spin shuttling between two quantum dots. To this end, we analyze the dynamics of an electron during a detuning sweep in a silicon double quantum dot (DQD) occupied by one electron. Possibilities and limitations of spin transport are investigated. Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling and are included in our model. Interactions that couple the position, spin, and valley degrees of freedom open a number of avoided crossings in the spectrum allowing for diabatic transitions and interfering paths. The outcomes of single and repeated spin shuttling protocols are explored by means of numerical simulations and an approximate analytical model based on the solution of the Landau-Zener problem. We find that a spin infidelity as low as $1\ensuremath{-}{F}_{s}\ensuremath{\lesssim}0.002$ with a relatively fast level velocity of $\ensuremath{\alpha}=600\phantom{\rule{0.16em}{0ex}}\ensuremath{\mu}{\mathrm{eV}\phantom{\rule{0.16em}{0ex}}\mathrm{ns}}^{\ensuremath{-}1}$ is feasible for optimal choices of parameters or by making use of constructive interference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅双量子点中的自旋穿梭
在量子设备的不同节点之间传输量子信息是量子处理器具有挑战性的功能之一。在自旋量子比特的背景下,半导体量子点之间的相干电子自旋穿梭可以满足这一要求。在这里,我们从理论上研究了两个量子点之间自旋穿梭的最小版本。为此,我们分析了被一个电子占据的硅双量子点(DQD)中电子在失谐扫描期间的动力学。研究了自旋输运的可能性和局限性。非均匀磁场中的自旋轨道相互作用和塞曼效应对自旋穿梭起着重要的作用,并纳入了我们的模型。耦合位置、自旋和谷自由度的相互作用在光谱中打开了许多可避免的交叉,允许非绝热跃迁和干扰路径。通过数值模拟和基于Landau-Zener问题解的近似解析模型,探讨了单次和多次自旋穿梭协议的结果。我们发现,低至$1\ensuremath{-}{F}_{s}\ensuremath{\lesssim}0.002$且水平速度相对较快的水平速度$\ensuremath{\alpha}=600\phantom{\rule{0.16em}{0ex}}\ensuremath{\mu}{\mathrm{eV}\phantom{\rule{0.16em}{0ex}}\mathrm{ns}}^{\ensuremath{-}1}$对于参数的最优选择或利用建设性干涉是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Simulation and Spectroscopy of a Strong Multipolar Fluid Investigation antiviral effects of cold atmospheric plasma Impact of Spectral Photon Sorting in Large-Scale Neutrino Detectors Design and Construction of Electronics for Measuring Superconducting-to-Normal State Switching Statistics of a Josephson Junction Coupling of fully symmetric As phonon to magnetism in iron based superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1