ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Join Algorithms via Reinforcement Learning

Junxiong Wang, Immanuel Trummer, A. Kara, Dan Olteanu
{"title":"ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Join Algorithms via Reinforcement Learning","authors":"Junxiong Wang, Immanuel Trummer, A. Kara, Dan Olteanu","doi":"10.48550/arXiv.2307.16540","DOIUrl":null,"url":null,"abstract":"The performance of worst-case optimal join algorithms depends on the order in which the join attributes are processed. Selecting good orders before query execution is hard, due to the large space of possible orders and unreliable execution cost estimates in case of data skew or data correlation. We propose ADOPT, a query engine that combines adaptive query processing with a worst-case optimal join algorithm, which uses an order on the join attributes instead of a join order on relations. ADOPT divides query execution into episodes in which different attribute orders are tried. Based on run time feedback on attribute order performance, ADOPT converges quickly to near-optimal orders. It avoids redundant work across different orders via a novel data structure, keeping track of parts of the join input that have been successfully processed. It selects attribute orders to try via reinforcement learning, balancing the need for exploring new orders with the desire to exploit promising orders. In experiments with various data sets and queries, it outperforms baselines, including commercial and open-source systems using worst-case optimal join algorithms, whenever queries become complex and therefore difficult to optimize.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"19 1","pages":"2805-2817"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.16540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The performance of worst-case optimal join algorithms depends on the order in which the join attributes are processed. Selecting good orders before query execution is hard, due to the large space of possible orders and unreliable execution cost estimates in case of data skew or data correlation. We propose ADOPT, a query engine that combines adaptive query processing with a worst-case optimal join algorithm, which uses an order on the join attributes instead of a join order on relations. ADOPT divides query execution into episodes in which different attribute orders are tried. Based on run time feedback on attribute order performance, ADOPT converges quickly to near-optimal orders. It avoids redundant work across different orders via a novel data structure, keeping track of parts of the join input that have been successfully processed. It selects attribute orders to try via reinforcement learning, balancing the need for exploring new orders with the desire to exploit promising orders. In experiments with various data sets and queries, it outperforms baselines, including commercial and open-source systems using worst-case optimal join algorithms, whenever queries become complex and therefore difficult to optimize.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用:通过强化学习自适应优化最坏情况最优连接算法的属性顺序
最坏情况最优连接算法的性能取决于处理连接属性的顺序。在执行查询之前选择好的订单是很困难的,因为可能的订单空间很大,而且在数据倾斜或数据相关的情况下,执行成本估计不可靠。我们提出了ADOPT,这是一个将自适应查询处理与最坏情况最优连接算法相结合的查询引擎,它在连接属性上使用顺序而不是在关系上使用连接顺序。ADOPT将查询执行分为不同的集,在这些集中尝试不同的属性顺序。基于对属性顺序性能的运行时反馈,ADOPT算法快速收敛到接近最优的顺序。它通过新颖的数据结构避免了跨不同顺序的冗余工作,跟踪已成功处理的连接输入部分。它通过强化学习选择属性顺序进行尝试,平衡探索新顺序的需求和利用有前途的顺序的愿望。在各种数据集和查询的实验中,无论何时查询变得复杂,因此难以优化,它的性能都优于基线,包括使用最坏情况最优连接算法的商业和开源系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cryptographically Secure Private Record Linkage Using Locality-Sensitive Hashing Utility-aware Payment Channel Network Rebalance Relational Query Synthesis ⋈ Decision Tree Learning Billion-Scale Bipartite Graph Embedding: A Global-Local Induced Approach Query Refinement for Diversity Constraint Satisfaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1