Customized reviews for small user-databases using iterative SVD and content based filtering

Jonathan Gregg, Nitin Jain
{"title":"Customized reviews for small user-databases using iterative SVD and content based filtering","authors":"Jonathan Gregg, Nitin Jain","doi":"10.1145/2501025.2501036","DOIUrl":null,"url":null,"abstract":"Recommender systems have proven to be a valuable tool for web companies like Amazon and Netflix for attracting and maintaining a large user base. However, in situations when user data is more scarce (e.g., for mid-sized companies, or an online retailer testing a new ratings system) algorithms tailored to smaller datasets can be used to further increase accuracy. This paper explores the potential of combining collaborative and content-based (using user comments) filtering algorithms using Yelp.com data from a single city. We present the method to combine two approaches, and find that the MSE for predicting a user's new rating can be reduced from a baseline MSE of 1.744 to 0.934 given just 2500 rated items in our real-world dataset.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"12 1","pages":"14:1-14:5"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501025.2501036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender systems have proven to be a valuable tool for web companies like Amazon and Netflix for attracting and maintaining a large user base. However, in situations when user data is more scarce (e.g., for mid-sized companies, or an online retailer testing a new ratings system) algorithms tailored to smaller datasets can be used to further increase accuracy. This paper explores the potential of combining collaborative and content-based (using user comments) filtering algorithms using Yelp.com data from a single city. We present the method to combine two approaches, and find that the MSE for predicting a user's new rating can be reduced from a baseline MSE of 1.744 to 0.934 given just 2500 rated items in our real-world dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用迭代SVD和基于内容的过滤为小型用户数据库定制评论
对于像亚马逊和Netflix这样的网络公司来说,推荐系统已经被证明是一个很有价值的工具,可以吸引和维持庞大的用户群。然而,在用户数据更稀缺的情况下(例如,对于中型公司或在线零售商测试新的评级系统),可以使用针对较小数据集的算法来进一步提高准确性。本文利用单个城市的Yelp.com数据,探索了将协作和基于内容(使用用户评论)的过滤算法相结合的潜力。我们提出了结合两种方法的方法,并发现预测用户新评级的MSE可以从1.744的基线MSE降低到0.934,给定我们的真实数据集中只有2500个评级项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An ensemble transformer-based model for Arabic sentiment analysis Homophily and polarization on political twitter during the 2017 Norwegian election Perceptible sentiment analysis of students' WhatsApp group chats in valence, arousal, and dominance space A performant deep learning model for sentiment analysis of climate change DEES: a real-time system for event extraction from disaster-related web text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1