Joint Source-Channel Coding for Gaussian Sources over AWGN Channels using Variational Autoencoders

Yashas Malur Saidutta, A. Abdi, F. Fekri
{"title":"Joint Source-Channel Coding for Gaussian Sources over AWGN Channels using Variational Autoencoders","authors":"Yashas Malur Saidutta, A. Abdi, F. Fekri","doi":"10.1109/ISIT.2019.8849476","DOIUrl":null,"url":null,"abstract":"In this paper, we study joint source-channel coding of gaussian sources over multiple AWGN channels where the source dimension is greater than the number of channels. We model our system as a Variational Autoencoder and show that its loss function takes up a form that is an upper bound on the optimization function got from rate-distortion theory. The constructed system employs two encoders that learn to split the source input space into almost half with no constraints. The system is jointly trained in a data-driven manner, end-to-end. We achieve state of the art results for certain configurations, some of which are 0.7dB better than previous works. We also showcase that the trained encoder/decoder is robust, i.e., even if the channel conditions change by +/-5dB, the performance of the system does not vary by more than 0.7dB w.r.t. a system trained at that channel condition. The trained system, to an extent, has the ability to generalize when a single input dimension is dropped and for some scenarios it is less than 1dB away from the system trained for that reduced dimension.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"1327-1331"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we study joint source-channel coding of gaussian sources over multiple AWGN channels where the source dimension is greater than the number of channels. We model our system as a Variational Autoencoder and show that its loss function takes up a form that is an upper bound on the optimization function got from rate-distortion theory. The constructed system employs two encoders that learn to split the source input space into almost half with no constraints. The system is jointly trained in a data-driven manner, end-to-end. We achieve state of the art results for certain configurations, some of which are 0.7dB better than previous works. We also showcase that the trained encoder/decoder is robust, i.e., even if the channel conditions change by +/-5dB, the performance of the system does not vary by more than 0.7dB w.r.t. a system trained at that channel condition. The trained system, to an extent, has the ability to generalize when a single input dimension is dropped and for some scenarios it is less than 1dB away from the system trained for that reduced dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用变分自编码器在AWGN信道上对高斯源进行联合信路编码
本文研究了在多个AWGN信道上高斯信号源维数大于信道数的联合信源信道编码。我们将系统建模为变分自编码器,并证明其损失函数的形式是由率失真理论得到的优化函数的上界。构建的系统采用两个编码器,它们学习将源输入空间几乎分成两半,没有任何约束。该系统以数据驱动的方式进行端到端的联合训练。对于某些配置,我们获得了最先进的结果,其中一些比以前的工作好0.7dB。我们还展示了训练的编码器/解码器是鲁棒的,即,即使信道条件变化+/-5dB,系统的性能变化也不会超过0.7dB。训练后的系统在一定程度上具有泛化能力,当单个输入维度被删除时,对于某些场景,它与针对该减少维度训练的系统的距离小于1dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gambling and Rényi Divergence Irregular Product Coded Computation for High-Dimensional Matrix Multiplication Error Exponents in Distributed Hypothesis Testing of Correlations Pareto Optimal Schemes in Coded Caching Constrained de Bruijn Codes and their Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1