Theoretical and experimental validation of the use of hydraulic load cells in fit-for-purpose assessment of structural bolt assemblies

IF 0.9 Q4 ENGINEERING, CIVIL Australian Journal of Structural Engineering Pub Date : 2022-04-22 DOI:10.1080/13287982.2022.2066610
S. Fernando, Jessey Lee, Y. Oktavianus
{"title":"Theoretical and experimental validation of the use of hydraulic load cells in fit-for-purpose assessment of structural bolt assemblies","authors":"S. Fernando, Jessey Lee, Y. Oktavianus","doi":"10.1080/13287982.2022.2066610","DOIUrl":null,"url":null,"abstract":"ABSTRACT A hydraulic load cell is a simple onsite load measurement device for quality assurance of structural fasteners. While these load cells can be used to establish torque-tension relationship, due to their reduced stiffness compared to electronic load cells, prominent standards such as EN14399-2 prevents the use of hydraulic load cells in bolt assemblies testing where nut rotational angle is also of importance. Since the significant angular parameter used in EN14399-2 is a difference of two angles, it can be argued that when the difference of angle is considered, the reduced stiffness effect of hydraulic load cell could be negated. This paper provides both theoretical and experimental validation of using an electronic and a hydraulic load cell to carry out the fit-for-purpose assembly test as prescribed in EN14399-2. Results show that a hydraulic load cell can be used as a simple onsite screening test to improve quality assurance of structural bolt assemblies on construction sites. The Australian Standard for fastener assemblies AS/NZS 1252:2016 requires a test regime to ensure the supplied bolts are suitable for its intended application. The methodology developed in this paper maybe used to screen the quality of the supplied fasteners on-site before being used in the assembly.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2022.2066610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT A hydraulic load cell is a simple onsite load measurement device for quality assurance of structural fasteners. While these load cells can be used to establish torque-tension relationship, due to their reduced stiffness compared to electronic load cells, prominent standards such as EN14399-2 prevents the use of hydraulic load cells in bolt assemblies testing where nut rotational angle is also of importance. Since the significant angular parameter used in EN14399-2 is a difference of two angles, it can be argued that when the difference of angle is considered, the reduced stiffness effect of hydraulic load cell could be negated. This paper provides both theoretical and experimental validation of using an electronic and a hydraulic load cell to carry out the fit-for-purpose assembly test as prescribed in EN14399-2. Results show that a hydraulic load cell can be used as a simple onsite screening test to improve quality assurance of structural bolt assemblies on construction sites. The Australian Standard for fastener assemblies AS/NZS 1252:2016 requires a test regime to ensure the supplied bolts are suitable for its intended application. The methodology developed in this paper maybe used to screen the quality of the supplied fasteners on-site before being used in the assembly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液压测力元件在结构螺栓组件适用性评估中的理论和实验验证
液压测力元件是一种简单的现场载荷测量装置,用于结构紧固件的质量保证。虽然这些测压元件可用于建立扭矩-张力关系,但由于与电子测压元件相比,它们的刚度降低,EN14399-2等重要标准禁止在螺母旋转角度也很重要的螺栓组件测试中使用液压测压元件。由于EN14399-2中使用的重要角度参数是两个角度的差值,因此可以认为,当考虑角度差值时,可以否定液压测压元件的减刚度效应。本文提供了使用电子和液压称重传感器进行符合EN14399-2规定的装配测试的理论和实验验证。结果表明,液压测力仪可以作为一种简单的现场筛选试验,提高施工现场结构螺栓组合的质量保证。澳大利亚紧固件组件标准AS/NZS 1252:2016要求测试制度,以确保提供的螺栓适合其预期应用。本文开发的方法可用于在装配前现场筛选供应紧固件的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
期刊最新文献
Performance evaluation of concrete comprising sugarcane bagasse ash and recycled polyethylene terephthalate Improving seismic performance of structural systems via reinforcing column bases Evaluation on structural performance of hybrid composite post-tension plate girder through finite element analysis Determination of response modification coefficient of SPSW in RC frame using plastic design method A plastic hinge method for static pushover analysis of 3D frame structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1