O. Kharazmi, D. Kumar, S. Dey, St. Anthony’s College
{"title":"Power Modified Lindley Distribution: Properties, Classical and Bayesian Estimation and Regression Model with Applications","authors":"O. Kharazmi, D. Kumar, S. Dey, St. Anthony’s College","doi":"10.17713/ajs.v52i3.1386","DOIUrl":null,"url":null,"abstract":"In this article, we explore a new probability density function, called the power modified Lindley distribution. Its main feature is to operate a simple trade-off among the generalized exponential, Weibull and gamma distributions, offering an alternative to these three well-established distributions. The proposed model turns out to be quite flexible: its probability density function can be right skewed and its associated hazard rate function may be increasing, decreasing, unimodal and constant. First the model parameters of the proposed distribution are obtained by the maximum likelihood method. Next, Bayes estimators of the unknown parameters are obtained under different loss functions. In addition, bootstrap confidence intervals are provided to compare with Bayes credible intervals. Besides, log power modified Lindley regression model for censored data is proposed. Two real data sets are analyzed to illustrate the flexibility and importance of the proposed model.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i3.1386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we explore a new probability density function, called the power modified Lindley distribution. Its main feature is to operate a simple trade-off among the generalized exponential, Weibull and gamma distributions, offering an alternative to these three well-established distributions. The proposed model turns out to be quite flexible: its probability density function can be right skewed and its associated hazard rate function may be increasing, decreasing, unimodal and constant. First the model parameters of the proposed distribution are obtained by the maximum likelihood method. Next, Bayes estimators of the unknown parameters are obtained under different loss functions. In addition, bootstrap confidence intervals are provided to compare with Bayes credible intervals. Besides, log power modified Lindley regression model for censored data is proposed. Two real data sets are analyzed to illustrate the flexibility and importance of the proposed model.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.