High dimensional statistics: Quadratic error in the local linear estimation of the relative regression

Oussama Bouanani, Mustapha Rachdi, Saâdia Rahmani
{"title":"High dimensional statistics: Quadratic error in the local linear estimation of the relative regression","authors":"Oussama Bouanani, Mustapha Rachdi, Saâdia Rahmani","doi":"10.21915/bimas.2022206","DOIUrl":null,"url":null,"abstract":"In this paper, we use the mean squared relative error as a loss function to construct a local linear estimator of the regression operator. More precisely, we consider n pairs of independent random variables ( X i , Y i ) for i = 1 , . . . , n that we assume drawn from the pair ( X, Y ), which is valued in ( F , R ), where F is a semi-metric space equipped with the semi-metric d . Under some standard assumptions, we give the convergence rate in mean square of the constructed estimator. The usefulness of the estimator is highlighted through the exact expression involved in the leading terms of the quadratic error. Notice that this method is useful in analyzing data with positive responses, such as life times.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"13 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2022206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we use the mean squared relative error as a loss function to construct a local linear estimator of the regression operator. More precisely, we consider n pairs of independent random variables ( X i , Y i ) for i = 1 , . . . , n that we assume drawn from the pair ( X, Y ), which is valued in ( F , R ), where F is a semi-metric space equipped with the semi-metric d . Under some standard assumptions, we give the convergence rate in mean square of the constructed estimator. The usefulness of the estimator is highlighted through the exact expression involved in the leading terms of the quadratic error. Notice that this method is useful in analyzing data with positive responses, such as life times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维统计:相对回归的局部线性估计中的二次误差
本文用均方相对误差作为损失函数,构造了回归算子的局部线性估计。更准确地说,我们考虑n对独立随机变量(X i, Y i),对于i = 1,…。, n,我们假设从(X, Y)对中得到,它的值在(F, R)中,其中F是一个半度量空间,具有半度量d。在一些标准假设下,给出了构造估计量的均方收敛速率。通过在二次误差的前导项中所涉及的精确表达式,突出了估计器的有用性。请注意,此方法在分析具有积极响应的数据(如生命周期)时非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
50.00%
发文量
14
期刊最新文献
Ricci soliton on a class of Riemannian manifolds under $D$-isometric deformation Remarks on star products for non-compact CR manifolds with non-degenerate Levi form The quantum group U̇ and flag manifolds over the semifield Z Semi-classical asymptotics of Bergman and spectral kernels for $(0,q)$-forms A simple solution formula for the Stokes equations in the half space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1