Efficient deep learning for stereo matching with larger image patches

Yiliu Feng, Zhengfa Liang, Hengzhu Liu
{"title":"Efficient deep learning for stereo matching with larger image patches","authors":"Yiliu Feng, Zhengfa Liang, Hengzhu Liu","doi":"10.1109/CISP-BMEI.2017.8301999","DOIUrl":null,"url":null,"abstract":"Stereo matching plays an important role in many applications, such as Advanced Driver Assistance Systems, 3D reconstruction, navigation, etc. However it is still an open problem with many difficult. Most difficult are often occlusions, object boundaries, and low or repetitive textures. In this paper, we propose a method for processing the stereo matching problem. We propose an efficient convolutional neural network to measure how likely the two patches matched or not and use the similarity as their stereo matching cost. Then the cost is refined by stereo methods, such as semiglobal maching, subpixel interpolation, median filter, etc. Our architecture uses large image patches which makes the results more robust to texture-less or repetitive textures areas. We experiment our approach on the KITTI2015 dataset which obtain an error rate of 4.42% and only needs 0.8 second for each image pairs.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8301999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Stereo matching plays an important role in many applications, such as Advanced Driver Assistance Systems, 3D reconstruction, navigation, etc. However it is still an open problem with many difficult. Most difficult are often occlusions, object boundaries, and low or repetitive textures. In this paper, we propose a method for processing the stereo matching problem. We propose an efficient convolutional neural network to measure how likely the two patches matched or not and use the similarity as their stereo matching cost. Then the cost is refined by stereo methods, such as semiglobal maching, subpixel interpolation, median filter, etc. Our architecture uses large image patches which makes the results more robust to texture-less or repetitive textures areas. We experiment our approach on the KITTI2015 dataset which obtain an error rate of 4.42% and only needs 0.8 second for each image pairs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的大图像块立体匹配
立体匹配在高级驾驶辅助系统、三维重建、导航等诸多应用中发挥着重要作用。然而,这仍然是一个悬而未决的问题,有许多困难。最困难的通常是遮挡,物体边界和低或重复的纹理。本文提出了一种立体匹配问题的处理方法。我们提出了一个有效的卷积神经网络来衡量两个补丁匹配或不匹配的可能性,并使用相似度作为它们的立体匹配成本。然后采用半全局加工、亚像素插值、中值滤波等立体方法对代价进行细化。我们的架构使用大的图像补丁,这使得结果对纹理较少或重复的纹理区域更加健壮。我们在KITTI2015数据集上进行了实验,得到的错误率为4.42%,每对图像只需要0.8秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1