Jonghyun Lee, 오동현, S. Kong, J. H. Sang, Yong-Joo Lee
{"title":"Investigation of Behaviours of Wall and Adjacent Ground Considering Shape of Geosynthetic Retaining Wall","authors":"Jonghyun Lee, 오동현, S. Kong, J. H. Sang, Yong-Joo Lee","doi":"10.12814/jkgss.2018.17.1.095","DOIUrl":null,"url":null,"abstract":"Recently, GRS (Geosynthetic Retaining Segmental) wall has been widely used as a method to replace concrete retaining wall because of its excellent structural stability and economic efficiency. It has been variously applied for foundation, slope, road as well as retaining wall. The GRS wall system, however, has a weak point that is serious crack of wall due to stress concentration at curved part of it. In this study, therefore, behaviour of GRS wall according to shape of it, shich has convex and concave, are analysed and compared using Finite Element analysis as the fundamental study for design optimization. Results including lateral deflection, settlements of ground surface and wall obtained from 2D FE analysis are compared between straight and curved parts from 3D FE analysis.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":"49 1","pages":"95-109"},"PeriodicalIF":0.4000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/jkgss.2018.17.1.095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 7
Abstract
Recently, GRS (Geosynthetic Retaining Segmental) wall has been widely used as a method to replace concrete retaining wall because of its excellent structural stability and economic efficiency. It has been variously applied for foundation, slope, road as well as retaining wall. The GRS wall system, however, has a weak point that is serious crack of wall due to stress concentration at curved part of it. In this study, therefore, behaviour of GRS wall according to shape of it, shich has convex and concave, are analysed and compared using Finite Element analysis as the fundamental study for design optimization. Results including lateral deflection, settlements of ground surface and wall obtained from 2D FE analysis are compared between straight and curved parts from 3D FE analysis.