Aravindakshan Parthasarathy, Jesyin Lai, Edward L Bartlett
{"title":"Age-Related Changes in Processing Simultaneous Amplitude Modulated Sounds Assessed Using Envelope Following Responses.","authors":"Aravindakshan Parthasarathy, Jesyin Lai, Edward L Bartlett","doi":"10.1007/s10162-016-0554-z","DOIUrl":null,"url":null,"abstract":"<p><p>Listening conditions in the real world involve segregating the stimuli of interest from competing auditory stimuli that differ in their sound level and spectral content. It is in these conditions of complex spectro-temporal processing that listeners with age-related hearing loss experience the most difficulties. Envelope following responses (EFRs) provide objective neurophysiological measures of auditory processing. EFRs were obtained to two simultaneous sinusoidally amplitude modulated (sAM) tones from young and aged Fischer-344 rats. One was held at a fixed suprathreshold sound level (sAM1FL) while the second varied in sound level (sAM2VL) and carrier frequency. EFR amplitudes to sAM1FL in the young decreased with signal-to-noise ratio (SNR), and this reduction was more pronounced when the sAM2VL carrier frequency was spectrally separated from sAM1FL. Aged animals showed similar trends, while having decreased overall response amplitudes compared to the young. These results were replicated using an established computational model of the auditory nerve. The trends observed in the EFRs were shown to be due to the contributions of the low-frequency tails of high-frequency neurons, rather than neurons tuned to the sAM1FL carrier frequency. Modeling changes in threshold and neural loss reproduced some of the changes seen with age, but accuracy improved when combined with an additional decrease representing synaptic loss of auditory nerve neurons. Sound segregation in this case derives primarily from peripheral processing, regardless of age. Contributions by more central neural mechanisms are likely to occur only at low SNRs. </p>","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"15 1","pages":"119-32"},"PeriodicalIF":3.9000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10162-016-0554-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/2/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Listening conditions in the real world involve segregating the stimuli of interest from competing auditory stimuli that differ in their sound level and spectral content. It is in these conditions of complex spectro-temporal processing that listeners with age-related hearing loss experience the most difficulties. Envelope following responses (EFRs) provide objective neurophysiological measures of auditory processing. EFRs were obtained to two simultaneous sinusoidally amplitude modulated (sAM) tones from young and aged Fischer-344 rats. One was held at a fixed suprathreshold sound level (sAM1FL) while the second varied in sound level (sAM2VL) and carrier frequency. EFR amplitudes to sAM1FL in the young decreased with signal-to-noise ratio (SNR), and this reduction was more pronounced when the sAM2VL carrier frequency was spectrally separated from sAM1FL. Aged animals showed similar trends, while having decreased overall response amplitudes compared to the young. These results were replicated using an established computational model of the auditory nerve. The trends observed in the EFRs were shown to be due to the contributions of the low-frequency tails of high-frequency neurons, rather than neurons tuned to the sAM1FL carrier frequency. Modeling changes in threshold and neural loss reproduced some of the changes seen with age, but accuracy improved when combined with an additional decrease representing synaptic loss of auditory nerve neurons. Sound segregation in this case derives primarily from peripheral processing, regardless of age. Contributions by more central neural mechanisms are likely to occur only at low SNRs.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.