{"title":"Calibrating structural modelling simulation parameters of a lightweight temporary shelter using a lateral load test in situ","authors":"F. Barreca, G. Cardinali, Viviana Tirella","doi":"10.4081/jae.2022.1418","DOIUrl":null,"url":null,"abstract":"The importance of temporary housing facilities has been recently highlighted due to the occurrence of migrant flows, agricultural workers, and, more recently, the need for ‘social distancing’ strategies has become crucial to limiting the spread of the coronavirus 2019 (COVID-19) disease. They are built with different shapes, technology, structural and material systems. The structural system is often very simple because the module must be constructed in a short time by a few people. They have guaranteed the safety and well-being of the occupants and have to be designed in accordance with the rules and approved building codes. For these reasons, it is very important to design and verify the structural system with a high level of accuracy using a model and reliable structural analysis methods. Furthermore, it is essential to test the actual behaviour of the structure in use to validate the structural model simulated with the behaviour in situ. In this paper, we have illustrated a simple original test in situ to analyse the behaviour and survey the displacements of the shear wall prototype of a temporary home module in cork and timber loaded with a horizontal force. The comparison between the measured and the calculated displacements by means of finite element model software led to the evaluation of the accuracy of the structural model and the more realistic value of the connection’s metal stiffness. A specific numerical function was obtained using a rational regression interpolation that relates the connections’ stiffness value to the horizontal force. Knowing the actual value of the connection stiffness leads to a more reliable and safe design.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"33 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/jae.2022.1418","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
The importance of temporary housing facilities has been recently highlighted due to the occurrence of migrant flows, agricultural workers, and, more recently, the need for ‘social distancing’ strategies has become crucial to limiting the spread of the coronavirus 2019 (COVID-19) disease. They are built with different shapes, technology, structural and material systems. The structural system is often very simple because the module must be constructed in a short time by a few people. They have guaranteed the safety and well-being of the occupants and have to be designed in accordance with the rules and approved building codes. For these reasons, it is very important to design and verify the structural system with a high level of accuracy using a model and reliable structural analysis methods. Furthermore, it is essential to test the actual behaviour of the structure in use to validate the structural model simulated with the behaviour in situ. In this paper, we have illustrated a simple original test in situ to analyse the behaviour and survey the displacements of the shear wall prototype of a temporary home module in cork and timber loaded with a horizontal force. The comparison between the measured and the calculated displacements by means of finite element model software led to the evaluation of the accuracy of the structural model and the more realistic value of the connection’s metal stiffness. A specific numerical function was obtained using a rational regression interpolation that relates the connections’ stiffness value to the horizontal force. Knowing the actual value of the connection stiffness leads to a more reliable and safe design.
期刊介绍:
The Journal of Agricultural Engineering (JAE) is the official journal of the Italian Society of Agricultural Engineering supported by University of Bologna, Italy. The subject matter covers a complete and interdisciplinary range of research in engineering for agriculture and biosystems.