Connecting users across social media sites: a behavioral-modeling approach

R. Zafarani, Huan Liu
{"title":"Connecting users across social media sites: a behavioral-modeling approach","authors":"R. Zafarani, Huan Liu","doi":"10.1145/2487575.2487648","DOIUrl":null,"url":null,"abstract":"People use various social media for different purposes. The information on an individual site is often incomplete. When sources of complementary information are integrated, a better profile of a user can be built to improve online services such as verifying online information. To integrate these sources of information, it is necessary to identify individuals across social media sites. This paper aims to address the cross-media user identification problem. We introduce a methodology (MOBIUS) for finding a mapping among identities of individuals across social media sites. It consists of three key components: the first component identifies users' unique behavioral patterns that lead to information redundancies across sites; the second component constructs features that exploit information redundancies due to these behavioral patterns; and the third component employs machine learning for effective user identification. We formally define the cross-media user identification problem and show that MOBIUS is effective in identifying users across social media sites. This study paves the way for analysis and mining across social media sites, and facilitates the creation of novel online services across sites.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"408","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 408

Abstract

People use various social media for different purposes. The information on an individual site is often incomplete. When sources of complementary information are integrated, a better profile of a user can be built to improve online services such as verifying online information. To integrate these sources of information, it is necessary to identify individuals across social media sites. This paper aims to address the cross-media user identification problem. We introduce a methodology (MOBIUS) for finding a mapping among identities of individuals across social media sites. It consists of three key components: the first component identifies users' unique behavioral patterns that lead to information redundancies across sites; the second component constructs features that exploit information redundancies due to these behavioral patterns; and the third component employs machine learning for effective user identification. We formally define the cross-media user identification problem and show that MOBIUS is effective in identifying users across social media sites. This study paves the way for analysis and mining across social media sites, and facilitates the creation of novel online services across sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨社交媒体网站连接用户:一种行为建模方法
人们出于不同的目的使用各种社交媒体。单个站点上的信息通常是不完整的。当整合了互补信息的来源时,可以建立更好的用户档案,以改进在线服务,例如验证在线信息。为了整合这些信息来源,有必要在社交媒体网站上识别个人。本文旨在解决跨媒体用户识别问题。我们介绍了一种方法(MOBIUS),用于在社交媒体网站上寻找个人身份之间的映射。它由三个关键组件组成:第一个组件识别导致跨站点信息冗余的用户独特行为模式;第二个组件构建利用这些行为模式导致的信息冗余的功能;第三个组件使用机器学习进行有效的用户识别。我们正式定义了跨媒体用户识别问题,并证明了MOBIUS在识别跨社交媒体网站的用户方面是有效的。这项研究为跨社交媒体网站的分析和挖掘铺平了道路,并促进了跨网站的新型在线服务的创建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1