Yuntang Li, Yueliang Ye, Ruirui Li, Pengfeng Wang, Fangfang Zhang
{"title":"Structure design and performance analysis of aerostatic thrust bearing with compound restrictors","authors":"Yuntang Li, Yueliang Ye, Ruirui Li, Pengfeng Wang, Fangfang Zhang","doi":"10.1051/matecconf/202235503070","DOIUrl":null,"url":null,"abstract":"Aerostatic thrust bearing compensated by multi-orifices and porous material restrictor simultaneously is proposed to improve the static performance of the bearing. Load Carrying Capacity (LCC), stiffness and the flow field characteristics of the bearing are obtained by Computational Fluid Dynamic (CFD) simulation. The influences of supply pressure, orifice number, orifice diameter, orifice distribution, porous material thickness and permeability coefficient on the bearing performance are analysed. It is indicated that LCC and stiffness of the bearing with compound restrictors are much higher than those of the bearing with porous material restrictor or multi-orifice restrictor if gas film thickness is in rational range. The bearing with compound restrictors has better stability than that of the bearing with multi-orifice restrictor. Moreover, the optimum bearing parameters with compound restrictors are given to improving the performance of aerostatic thrust bearing.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202235503070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aerostatic thrust bearing compensated by multi-orifices and porous material restrictor simultaneously is proposed to improve the static performance of the bearing. Load Carrying Capacity (LCC), stiffness and the flow field characteristics of the bearing are obtained by Computational Fluid Dynamic (CFD) simulation. The influences of supply pressure, orifice number, orifice diameter, orifice distribution, porous material thickness and permeability coefficient on the bearing performance are analysed. It is indicated that LCC and stiffness of the bearing with compound restrictors are much higher than those of the bearing with porous material restrictor or multi-orifice restrictor if gas film thickness is in rational range. The bearing with compound restrictors has better stability than that of the bearing with multi-orifice restrictor. Moreover, the optimum bearing parameters with compound restrictors are given to improving the performance of aerostatic thrust bearing.
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.