M. Lauricella, F. Cipolletta, G. Pontrelli, D. Pisignano, S. Succi
{"title":"Effects of Orthogonal Rotating Electric Fields on Electrospinning Process","authors":"M. Lauricella, F. Cipolletta, G. Pontrelli, D. Pisignano, S. Succi","doi":"10.1063/1.4997086","DOIUrl":null,"url":null,"abstract":"Electrospinning is a nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers with nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of a better control on the morphology of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a $30 \\%$ in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres. Applications can be envisaged in the fields of nanophotonic components as well as for designing new and improved filtration materials.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4997086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Electrospinning is a nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers with nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of a better control on the morphology of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a $30 \%$ in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres. Applications can be envisaged in the fields of nanophotonic components as well as for designing new and improved filtration materials.