Iwasokun Gabriel Babatunde, Ayowole Oluwatayo Idowu, B. Kuboye
{"title":"Fuzzification Technique for Candidate Rating and Selection","authors":"Iwasokun Gabriel Babatunde, Ayowole Oluwatayo Idowu, B. Kuboye","doi":"10.4018/ijdsst.303944","DOIUrl":null,"url":null,"abstract":"The traditional ways of candidate selection and recruitment are prone to subjectivity, imprecision and vagueness. With a view to achieving objective and precise selection and recruitment while keeping up with technological improvement and changes, this paper discusses a fuzzification-based technique for candidate rating and selection. The technique comprises a fuzzy logic component that is an extension of Boolean logic and used for establishing accurate selection process and precise solutions to multi-variable problems. There is a knowledge base component which forms the database of multi-level information and rule base which composes a set of if-then statements for decision making. Its inference engine applies a pre-defined procedure on input from the rule base and fuzzy logic interfaces for final recommendations. The proposed methodology performs pre-defined procedures that are based on some input sets which stores multi-level information derived from several pre-specified scores. Results from the implementation of the proposed technique established its practical function.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"21 1","pages":"1-23"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.303944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional ways of candidate selection and recruitment are prone to subjectivity, imprecision and vagueness. With a view to achieving objective and precise selection and recruitment while keeping up with technological improvement and changes, this paper discusses a fuzzification-based technique for candidate rating and selection. The technique comprises a fuzzy logic component that is an extension of Boolean logic and used for establishing accurate selection process and precise solutions to multi-variable problems. There is a knowledge base component which forms the database of multi-level information and rule base which composes a set of if-then statements for decision making. Its inference engine applies a pre-defined procedure on input from the rule base and fuzzy logic interfaces for final recommendations. The proposed methodology performs pre-defined procedures that are based on some input sets which stores multi-level information derived from several pre-specified scores. Results from the implementation of the proposed technique established its practical function.