{"title":"SimulE: A novel convolution-based model for knowledge graph embedding","authors":"Chaoyi Yan, Xinli Huang, H. Gu, Siyuan Meng","doi":"10.1109/CSCWD57460.2023.10152758","DOIUrl":null,"url":null,"abstract":"Knowledge graph embedding technique is one of the mainstream methods to handle the link prediction task, which learns embedding representations for each entity and relation to predict missing links in knowledge graphs. In general, previous convolution-based models apply convolution filters on the reshaped input feature maps to extract expressive features. However, existing convolution-based models cannot extract the interaction information of entities and relations among the same and different dimensional entries simultaneously. To overcome this problem, we propose a novel convolution-based model (SimulE), which utilizes two paths simultaneously to capture the rich interaction information of entities and relations. One path uses 1D convolution filters on 2D reshaped input maps, which maintains the translation properties of the triplets and has the ability to extract interaction information of entities and relations among the same dimensional entries. Another path employs 3D convolution filters on the 3D reshaped input maps, which is suitable for capturing the interaction information of entities and relations among the different dimensional entries. Experimental results show that SimulE can effectively model complex relation types and achieve state-of-the-art performance in almost all metrics on three benchmark datasets. In particular, compared with baseline ConvE, SimulE outperforms it in MRR by 2.9%, 9.8% and 2.8% on FB15k-237, YAGO3-10 and DB100K respectively.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"38 1","pages":"624-629"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152758","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge graph embedding technique is one of the mainstream methods to handle the link prediction task, which learns embedding representations for each entity and relation to predict missing links in knowledge graphs. In general, previous convolution-based models apply convolution filters on the reshaped input feature maps to extract expressive features. However, existing convolution-based models cannot extract the interaction information of entities and relations among the same and different dimensional entries simultaneously. To overcome this problem, we propose a novel convolution-based model (SimulE), which utilizes two paths simultaneously to capture the rich interaction information of entities and relations. One path uses 1D convolution filters on 2D reshaped input maps, which maintains the translation properties of the triplets and has the ability to extract interaction information of entities and relations among the same dimensional entries. Another path employs 3D convolution filters on the 3D reshaped input maps, which is suitable for capturing the interaction information of entities and relations among the different dimensional entries. Experimental results show that SimulE can effectively model complex relation types and achieve state-of-the-art performance in almost all metrics on three benchmark datasets. In particular, compared with baseline ConvE, SimulE outperforms it in MRR by 2.9%, 9.8% and 2.8% on FB15k-237, YAGO3-10 and DB100K respectively.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.