B. Aronov, Matias Korman, Simon Pratt, André van Renssen, Marcel Roeloffzen
{"title":"Time-Space Trade-offs for Triangulating a Simple Polygon","authors":"B. Aronov, Matias Korman, Simon Pratt, André van Renssen, Marcel Roeloffzen","doi":"10.4230/LIPIcs.SWAT.2016.30","DOIUrl":null,"url":null,"abstract":"An s-workspace algorithm is an algorithm that has read-only access to the values of the input, write-only access to the output, and only uses O(s) additional words of space. We give a randomized s-workspace algorithm for triangulating a simple polygon P of n vertices, for any s up to n. The algorithm runs in O(n^2/s+n(log s)log^5(n/s)) expected time using O(s) variables, for any s up to n. In particular, the algorithm runs in O(n^2/s) expected time for most values of s.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"10 1","pages":"105-124"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2016.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10
Abstract
An s-workspace algorithm is an algorithm that has read-only access to the values of the input, write-only access to the output, and only uses O(s) additional words of space. We give a randomized s-workspace algorithm for triangulating a simple polygon P of n vertices, for any s up to n. The algorithm runs in O(n^2/s+n(log s)log^5(n/s)) expected time using O(s) variables, for any s up to n. In particular, the algorithm runs in O(n^2/s) expected time for most values of s.
期刊介绍:
The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms.
Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.