{"title":"A Hybrid Method for Recommendation Systems based on Tourism with an Evolutionary Algorithm and Topsis Model","authors":"Saman Forouzandeh, M. Rostami, Kamal Berahmand","doi":"10.1080/16168658.2021.2019430","DOIUrl":null,"url":null,"abstract":"Recommender systems have been pervasively applied as a technique of suggesting travel recommendations to tourists. Actually, recommendation systems significantly contribute to the decision-making process of tourists. A new approach of recommendation systems in the tourism industry by a combination of the Artificial Bee Colony (ABC) algorithm and Fuzzy TOPSIS is proposed in the present paper. A multi-criteria decision-making method called the Techniques for Order of Preference by Similarity to Ideal Solution (TOPSIS) has been applied for the purpose of optimizing the system. Data were gathered through a 1015 online questionnaire on the Facebook social media site. In the first stage, the TOPSIS model defines a positive ideal solution in the form of a matrix with four columns, which indicates factors that get involved in this study. In the second stage, the ABC algorithm starts to search amongst destinations and recommends the best tourist spot to users.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"70 1","pages":"26 - 50"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.2019430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 34
Abstract
Recommender systems have been pervasively applied as a technique of suggesting travel recommendations to tourists. Actually, recommendation systems significantly contribute to the decision-making process of tourists. A new approach of recommendation systems in the tourism industry by a combination of the Artificial Bee Colony (ABC) algorithm and Fuzzy TOPSIS is proposed in the present paper. A multi-criteria decision-making method called the Techniques for Order of Preference by Similarity to Ideal Solution (TOPSIS) has been applied for the purpose of optimizing the system. Data were gathered through a 1015 online questionnaire on the Facebook social media site. In the first stage, the TOPSIS model defines a positive ideal solution in the form of a matrix with four columns, which indicates factors that get involved in this study. In the second stage, the ABC algorithm starts to search amongst destinations and recommends the best tourist spot to users.
期刊介绍:
Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]