{"title":"Conditional sequential Monte Carlo in high dimensions","authors":"Axel Finke, Alexandre Hoang Thiery","doi":"10.1214/22-aos2252","DOIUrl":null,"url":null,"abstract":"The iterated conditional sequential Monte Carlo (i-CSMC) algorithm from Andrieu, Doucet and Holenstein (2010) is an MCMC approach for efficiently sampling from the joint posterior distribution of the $T$ latent states in challenging time-series models, e.g. in non-linear or non-Gaussian state-space models. It is also the main ingredient in particle Gibbs samplers which infer unknown model parameters alongside the latent states. In this work, we first prove that the i-CSMC algorithm suffers from a curse of dimension in the dimension of the states, $D$: it breaks down unless the number of samples (\"particles\"), $N$, proposed by the algorithm grows exponentially with $D$. Then, we present a novel\"local\"version of the algorithm which proposes particles using Gaussian random-walk moves that are suitably scaled with $D$. We prove that this iterated random-walk conditional sequential Monte Carlo (i-RW-CSMC) algorithm avoids the curse of dimension: for arbitrary $N$, its acceptance rates and expected squared jumping distance converge to non-trivial limits as $D \\to \\infty$. If $T = N = 1$, our proposed algorithm reduces to a Metropolis--Hastings or Barker's algorithm with Gaussian random-walk moves and we recover the well known scaling limits for such algorithms.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The iterated conditional sequential Monte Carlo (i-CSMC) algorithm from Andrieu, Doucet and Holenstein (2010) is an MCMC approach for efficiently sampling from the joint posterior distribution of the $T$ latent states in challenging time-series models, e.g. in non-linear or non-Gaussian state-space models. It is also the main ingredient in particle Gibbs samplers which infer unknown model parameters alongside the latent states. In this work, we first prove that the i-CSMC algorithm suffers from a curse of dimension in the dimension of the states, $D$: it breaks down unless the number of samples ("particles"), $N$, proposed by the algorithm grows exponentially with $D$. Then, we present a novel"local"version of the algorithm which proposes particles using Gaussian random-walk moves that are suitably scaled with $D$. We prove that this iterated random-walk conditional sequential Monte Carlo (i-RW-CSMC) algorithm avoids the curse of dimension: for arbitrary $N$, its acceptance rates and expected squared jumping distance converge to non-trivial limits as $D \to \infty$. If $T = N = 1$, our proposed algorithm reduces to a Metropolis--Hastings or Barker's algorithm with Gaussian random-walk moves and we recover the well known scaling limits for such algorithms.