Searching Web Data using MinHash LSH

B. Rao, Erkang Zhu
{"title":"Searching Web Data using MinHash LSH","authors":"B. Rao, Erkang Zhu","doi":"10.1145/2882903.2914838","DOIUrl":null,"url":null,"abstract":"In this extended abstract, we explore the use of MinHash Locality Sensitive Hashing (MinHash LSH) to address the problem of indexing and searching Web data. We discuss a statistical tuning strategy of MinHash LSH, and experimentally evaluate the accuracy and performance, compared with inverted index. In addition, we describe an on-line demo for the index with real Web data.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this extended abstract, we explore the use of MinHash Locality Sensitive Hashing (MinHash LSH) to address the problem of indexing and searching Web data. We discuss a statistical tuning strategy of MinHash LSH, and experimentally evaluate the accuracy and performance, compared with inverted index. In addition, we describe an on-line demo for the index with real Web data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用MinHash LSH搜索Web数据
在这篇扩展摘要中,我们探讨了使用MinHash Locality Sensitive hash (MinHash LSH)来解决索引和搜索Web数据的问题。讨论了一种MinHash LSH的统计调优策略,并与倒排索引进行了比较,对其精度和性能进行了实验评估。此外,我们还描述了一个使用真实Web数据的索引的在线演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1