In-Situ Synthesis of Graphene-Like Carbon Encapsulated Copper Particles for Reinforcing Copper Matrix Composites

Shengcheng Shu, Q. Yuan, W. Dai, Mingliang Wu, Dan Dai, Ke Yang, Bo Wang, Cheng‐Te Lin, Thomas Wuebben, J. Degenhardt, C. Regula, R. Wilken, N. Jiang, Joerg Ihde
{"title":"In-Situ Synthesis of Graphene-Like Carbon Encapsulated Copper Particles for Reinforcing Copper Matrix Composites","authors":"Shengcheng Shu, Q. Yuan, W. Dai, Mingliang Wu, Dan Dai, Ke Yang, Bo Wang, Cheng‐Te Lin, Thomas Wuebben, J. Degenhardt, C. Regula, R. Wilken, N. Jiang, Joerg Ihde","doi":"10.2139/ssrn.3805231","DOIUrl":null,"url":null,"abstract":"Abstract Owing to the unfavorable wetting and density difference between graphene and copper, it remains challenging to achieve homogeneous dispersion of graphene for utilizing the unique nature of graphene in copper matrix composites. Here, we design an in-situ process to fabricate graphene-like carbon (GLC) reinforcing copper matrix composites: GLC can be directly fabricated on commercial copper particles using modified PECVD method followed by vacuum hot pressing, which is high-efficiency and can be massively produced for graphene reinforced metal matrix composites in industrial level. After hot pressing, the GLC with ultralow content (170 to 350 ppm) can be uniformly dispersed and tightly embedded within the copper matrix. A remarkable thermal conductivity enhancement efficiency of 85% and enhanced thermal conductivity (439 W m−1 K−1), accompanied by the higher wear resistance, can be obtained in our GLC reinforced copper matrix composites. In actual arc ablation performance measurement, the breakdown strength and relative arc ablation resistance of GLC/Cu composites can be significantly improved by 106.5% and 33.3% than pure copper, respectively, demonstrating GLC/Cu composites a promising candidate for application as high voltage electrical contacts.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3805231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract Owing to the unfavorable wetting and density difference between graphene and copper, it remains challenging to achieve homogeneous dispersion of graphene for utilizing the unique nature of graphene in copper matrix composites. Here, we design an in-situ process to fabricate graphene-like carbon (GLC) reinforcing copper matrix composites: GLC can be directly fabricated on commercial copper particles using modified PECVD method followed by vacuum hot pressing, which is high-efficiency and can be massively produced for graphene reinforced metal matrix composites in industrial level. After hot pressing, the GLC with ultralow content (170 to 350 ppm) can be uniformly dispersed and tightly embedded within the copper matrix. A remarkable thermal conductivity enhancement efficiency of 85% and enhanced thermal conductivity (439 W m−1 K−1), accompanied by the higher wear resistance, can be obtained in our GLC reinforced copper matrix composites. In actual arc ablation performance measurement, the breakdown strength and relative arc ablation resistance of GLC/Cu composites can be significantly improved by 106.5% and 33.3% than pure copper, respectively, demonstrating GLC/Cu composites a promising candidate for application as high voltage electrical contacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位合成类石墨烯碳包覆铜颗粒增强铜基复合材料
由于石墨烯和铜之间的湿润性和密度差异,利用石墨烯在铜基复合材料中的独特性质,实现石墨烯的均匀分散仍然是一个挑战。本研究设计了一种原位制备类石墨烯碳(GLC)增强铜基复合材料的工艺:采用改进的PECVD方法直接在商用铜颗粒上制备类石墨烯碳(GLC),然后进行真空热压,该工艺效率高,可批量生产工业级石墨烯增强金属基复合材料。热压后,超低含量(170 ~ 350 ppm)的GLC可均匀分散,并紧密嵌入铜基体中。GLC增强铜基复合材料的导热系数提高了85%,导热系数提高了439 W m−1 K−1,并具有较高的耐磨性。在实际电弧烧蚀性能测试中,与纯铜相比,GLC/Cu复合材料的击穿强度和相对抗电弧烧蚀性能分别提高了106.5%和33.3%,表明GLC/Cu复合材料在高压电触点领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal-Graphene Hybrid Terahertz Metasurfaces Based on Bound States in the Continuum (Bic) and Quasi-Bic for Dynamic Near-Field Imaging Rapid Nucleation and Growth of Tetrafluoroethane Hydrate in the Cyclic Process of Boiling–Condensation A Unified Maximum Entropy Principle Approach for a Large Class of Routing Problems Fabrication of a Novel Surface Molecularly Imprinted Polymer Based on Zeolitic Imidazolate Framework-7 for Selective Extraction of Phthalates Measuring Oxygen Solubility in Ni Grains and Boundaries after Oxidation Using Atom Probe Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1