An Improved Biogeography-Based Optimization Algorithm for Flow Shop Scheduling Problem

Ming Huang, Shasha Shi, Xu Liang, Xuan Jiao, Yijie Fu
{"title":"An Improved Biogeography-Based Optimization Algorithm for Flow Shop Scheduling Problem","authors":"Ming Huang, Shasha Shi, Xu Liang, Xuan Jiao, Yijie Fu","doi":"10.1109/ICCSNT50940.2020.9305008","DOIUrl":null,"url":null,"abstract":"For flow shop scheduling problem, an improved biogeography-based optimization algorithm (IBBO) is proposed. Firstly, the mathematical model of the problem is established with the objective function of minimizing the maximum completion time. Secondly, the NEH algorithm is used to initialize the population. The cosine migration model is introduced to perform the migration operation. Besides the elite retention strategy is added in the iteration process. And the simulated annealing algorithm is combined to improve the optimization ability of biogeography-based optimization algorithm. Finally, on the basis of Taillard example, the performance of the proposed method is analyzed by using ARPD through experimental simulation. The results show the advantages of the improved biogeography-based optimization.","PeriodicalId":6794,"journal":{"name":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"7 1","pages":"59-63"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT50940.2020.9305008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For flow shop scheduling problem, an improved biogeography-based optimization algorithm (IBBO) is proposed. Firstly, the mathematical model of the problem is established with the objective function of minimizing the maximum completion time. Secondly, the NEH algorithm is used to initialize the population. The cosine migration model is introduced to perform the migration operation. Besides the elite retention strategy is added in the iteration process. And the simulated annealing algorithm is combined to improve the optimization ability of biogeography-based optimization algorithm. Finally, on the basis of Taillard example, the performance of the proposed method is analyzed by using ARPD through experimental simulation. The results show the advantages of the improved biogeography-based optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物地理的改进流水车间调度优化算法
针对流水车间调度问题,提出了一种改进的基于生物地理的优化算法。首先,以最大完工时间最小为目标函数,建立了问题的数学模型;其次,采用NEH算法对种群进行初始化;引入余弦迁移模型进行迁移操作。此外,在迭代过程中加入了精英留存策略。并结合模拟退火算法,提高了基于生物地理学的优化算法的优化能力。最后,在tailard实例的基础上,利用ARPD进行了实验仿真,分析了所提方法的性能。结果表明,改进的生物地理学优化方法具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Optimal Rescheduling Mode of Flexible Job Shop Under the Arrival of a New Job Object Detection on Aerial Image by Using High-Resolutuion Network An Improved Ant Colony Algorithm is Proposed to Solve the Single Objective Flexible Job-shop Scheduling Problem RFID Network Planning for Flexible Manufacturing Workshop with Multiple Coverage Requirements Grounding Pile Detection System based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1