A Bayesian Inference Approach for Bivariate Weibull Distributions Derived from Roy and Morgenstern Methods

R. P. Oliveira, Marcos Vinicius de Oliveira Peres, Milene Regina dos Santos, E. Martinez, Jorge Aberto Achcar
{"title":"A Bayesian Inference Approach for Bivariate Weibull Distributions Derived from Roy and Morgenstern Methods","authors":"R. P. Oliveira, Marcos Vinicius de Oliveira Peres, Milene Regina dos Santos, E. Martinez, Jorge Aberto Achcar","doi":"10.19139/SOIC-2310-5070-1240","DOIUrl":null,"url":null,"abstract":"Bivariate lifetime distributions are of great importance in studies related to interdependent components, especially in engineering applications. In this paper, we introduce two bivariate lifetime assuming three- parameter Weibull marginal distributions. Some characteristics of the proposed distributions as the joint survival function, hazard rate function, cross factorial moment and stress-strength parameter are also derived. The inferences for the parameters or even functions of the parameters of the models are obtained under a Bayesian approach. An extensive numerical application using simulated data is carried out to evaluate the accuracy of the obtained estimators to illustrate the usefulness of the proposed methodology. To illustrate the usefulness of the proposed model, we also include an example with real data from which it is possible to see that the proposed model leads to good fits to the data.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-1240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Bivariate lifetime distributions are of great importance in studies related to interdependent components, especially in engineering applications. In this paper, we introduce two bivariate lifetime assuming three- parameter Weibull marginal distributions. Some characteristics of the proposed distributions as the joint survival function, hazard rate function, cross factorial moment and stress-strength parameter are also derived. The inferences for the parameters or even functions of the parameters of the models are obtained under a Bayesian approach. An extensive numerical application using simulated data is carried out to evaluate the accuracy of the obtained estimators to illustrate the usefulness of the proposed methodology. To illustrate the usefulness of the proposed model, we also include an example with real data from which it is possible to see that the proposed model leads to good fits to the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由Roy和Morgenstern方法导出的二元威布尔分布的贝叶斯推理方法
二元寿命分布在相互依赖部件的研究中具有重要意义,特别是在工程应用中。本文介绍了假设三参数威布尔边际分布的两种二元寿命。本文还推导了联合生存函数、危险率函数、交叉因子矩和应力-强度参数等分布的一些特征。在贝叶斯方法下得到了模型参数甚至参数函数的推论。利用模拟数据进行了广泛的数值应用,以评估获得的估计器的准确性,以说明所提出方法的有效性。为了说明所提出的模型的有用性,我们还包括一个具有真实数据的示例,从中可以看到所提出的模型与数据的拟合效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1