Penalized Sieve Estimation and Inference of Semi-Nonparametric Dynamic Models: A Selective Review

Xiaohong Chen
{"title":"Penalized Sieve Estimation and Inference of Semi-Nonparametric Dynamic Models: A Selective Review","authors":"Xiaohong Chen","doi":"10.2139/ssrn.1850615","DOIUrl":null,"url":null,"abstract":"In this selective review, we first provide some empirical examples that motivate the usefulness of semi-nonparametric techniques in modelling economic and financial time series. We describe popular classes of semi-nonparametric dynamic models and some temporal dependence properties. We then present penalized sieve extremum (PSE) estimation as a general method for semi-nonparametric models with cross-sectional, panel, time series, or spatial data. The method is especially powerful in estimating difficult ill-posed inverse problems such as semi-nonparametric mixtures or conditional moment restrictions. We review recent advances on inference and large sample properties of the PSE estimators, which include (1) consistency and convergence rates of the PSE estimator of the nonparametric part; (2) limiting distributions of plug-in PSE estimators of functionals that are either smooth (i.e., root-n estimable) or non-smooth (i.e., slower than root-n estimable); (3) simple criterion-based inference for plug-in PSE estimation of smooth or non-smooth functionals; and (4) root-n asymptotic normality of semiparametric two-step estimators and their consistent variance estimators. Examples from dynamic asset pricing, nonlinear spatial VAR, semiparametric GARCH, and copula-based multivariate financial models are used to illustrate the general results.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1850615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this selective review, we first provide some empirical examples that motivate the usefulness of semi-nonparametric techniques in modelling economic and financial time series. We describe popular classes of semi-nonparametric dynamic models and some temporal dependence properties. We then present penalized sieve extremum (PSE) estimation as a general method for semi-nonparametric models with cross-sectional, panel, time series, or spatial data. The method is especially powerful in estimating difficult ill-posed inverse problems such as semi-nonparametric mixtures or conditional moment restrictions. We review recent advances on inference and large sample properties of the PSE estimators, which include (1) consistency and convergence rates of the PSE estimator of the nonparametric part; (2) limiting distributions of plug-in PSE estimators of functionals that are either smooth (i.e., root-n estimable) or non-smooth (i.e., slower than root-n estimable); (3) simple criterion-based inference for plug-in PSE estimation of smooth or non-smooth functionals; and (4) root-n asymptotic normality of semiparametric two-step estimators and their consistent variance estimators. Examples from dynamic asset pricing, nonlinear spatial VAR, semiparametric GARCH, and copula-based multivariate financial models are used to illustrate the general results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半非参数动态模型的惩罚筛估计与推理:选择性综述
在这篇选择性回顾中,我们首先提供了一些经验例子,这些例子激发了半非参数技术在经济和金融时间序列建模中的实用性。我们描述了一类流行的半非参数动态模型和一些时间相关性质。然后,我们提出惩罚筛极值(PSE)估计作为具有横截面,面板,时间序列或空间数据的半非参数模型的一般方法。该方法在估计半非参数混合或条件矩限制等困难的病态逆问题方面特别有效。本文综述了近年来关于PSE估计量的推断和大样本性质的研究进展,主要包括:(1)非参数部分的PSE估计量的一致性和收敛率;(2)光滑(即可估计根号n)或非光滑(即比可估计根号n慢)泛函的插件式PSE估计量的极限分布;(3)光滑或非光滑泛函的插入式PSE估计的简单准则推理;(4)半参数两步估计量及其一致方差估计量的根n渐近正态性。从动态资产定价、非线性空间VAR、半参数GARCH和基于copula的多元金融模型的例子来说明一般结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Estimation of Pricing Kernels and Market-Implied Densities Futures-Trading Activity and Jump Risk: Evidence From the Bitcoin Market Partial Identification of Discrete Instrumental Variable Models using Shape Restrictions Frequency Dependent Risk Spatial Heterogeneity in the Borrowers' Mortgage Termination Decision – a Nonparametric Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1