{"title":"Cluster Head Selection for in Wireless Sensor Networks","authors":"A. S. Raval","doi":"10.26472/IJCES.V1I3.32","DOIUrl":null,"url":null,"abstract":"Wireless sensor network consists of several distributed sensor nodes. It is used for several environmental applications, military applications and health related applications. To prolong the lifetime of the sensor nodes, designing efficient routing protocols is critical. Most of the research in energy efficient data gathering in data centric applications of wireless sensor networks is motivated by LEACH (Low Energy Adaptive Clustering Hierarchy) scheme. It allows the rotation of cluster head role among the sensor nodes and tries to distribute the energy consumption over the network. Selection of sensor node for such role rotations greatly affects the energy efficiency of the network. Some of the routing protocol has a drawback that the cluster is not evenly distributed due to its randomized rotation of local cluster head. We have surveyed several existing methods for selecting energy efficient cluster head in wireless sensor networks. We have proposed an energy efficient cluster head selection method in which the cluster head selection and replacement cost is reduced and ultimately the network lifetime is increased. Using our proposed method, network life time is increased compared to existing methods.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"10 1","pages":"6"},"PeriodicalIF":1.4000,"publicationDate":"2015-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26472/IJCES.V1I3.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Wireless sensor network consists of several distributed sensor nodes. It is used for several environmental applications, military applications and health related applications. To prolong the lifetime of the sensor nodes, designing efficient routing protocols is critical. Most of the research in energy efficient data gathering in data centric applications of wireless sensor networks is motivated by LEACH (Low Energy Adaptive Clustering Hierarchy) scheme. It allows the rotation of cluster head role among the sensor nodes and tries to distribute the energy consumption over the network. Selection of sensor node for such role rotations greatly affects the energy efficiency of the network. Some of the routing protocol has a drawback that the cluster is not evenly distributed due to its randomized rotation of local cluster head. We have surveyed several existing methods for selecting energy efficient cluster head in wireless sensor networks. We have proposed an energy efficient cluster head selection method in which the cluster head selection and replacement cost is reduced and ultimately the network lifetime is increased. Using our proposed method, network life time is increased compared to existing methods.
期刊介绍:
Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.