Bootstrapping Clustered Data in R using lmeresampler

R J. Pub Date : 2021-06-11 DOI:10.32614/rj-2023-015
A. Loy, J. Korobova
{"title":"Bootstrapping Clustered Data in R using lmeresampler","authors":"A. Loy, J. Korobova","doi":"10.32614/rj-2023-015","DOIUrl":null,"url":null,"abstract":"Linear mixed-effects models are commonly used to analyze clustered data structures. There are numerous packages to fit these models in R and conduct likelihood-based inference. The implementation of resampling-based procedures for inference are more limited. In this paper, we introduce the lmeresampler package for bootstrapping nested linear mixed-effects models fit via lme4 or nlme. Bootstrap estimation allows for bias correction, adjusted standard errors and confidence intervals for small samples sizes and when distributional assumptions break down. We will also illustrate how bootstrap resampling can be used to diagnose this model class. In addition, lmeresampler makes it easy to construct interval estimates of functions of model parameters.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"33 1","pages":"103-120"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Linear mixed-effects models are commonly used to analyze clustered data structures. There are numerous packages to fit these models in R and conduct likelihood-based inference. The implementation of resampling-based procedures for inference are more limited. In this paper, we introduce the lmeresampler package for bootstrapping nested linear mixed-effects models fit via lme4 or nlme. Bootstrap estimation allows for bias correction, adjusted standard errors and confidence intervals for small samples sizes and when distributional assumptions break down. We will also illustrate how bootstrap resampling can be used to diagnose this model class. In addition, lmeresampler makes it easy to construct interval estimates of functions of model parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在R中使用lmeresampler引导聚类数据
线性混合效应模型通常用于分析聚类数据结构。在R中有许多包可以拟合这些模型并进行基于似然的推断。基于重采样的推理程序的实现更加有限。在本文中,我们介绍了lmeresampler包,用于引导通过lme4或nlme拟合的嵌套线性混合效应模型。自举估计允许偏差校正,调整标准误差和小样本量的置信区间,当分布假设打破。我们还将说明如何使用自举重新采样来诊断这类模型。此外,该方法使模型参数函数的区间估计易于构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1