Potential Ways to Address Shortage Situations of 99Mo/99mTc

Leah M. Filzen, Lacey R. Ellingson, A. Paulsen, J. Hung
{"title":"Potential Ways to Address Shortage Situations of 99Mo/99mTc","authors":"Leah M. Filzen, Lacey R. Ellingson, A. Paulsen, J. Hung","doi":"10.2967/jnmt.116.185454","DOIUrl":null,"url":null,"abstract":"99mTc, the most common radioisotope used in nuclear medicine, is produced in a nuclear reactor from the decay of 99Mo. There are only a few aging nuclear reactors around the world that produce 99Mo, and one of the major contributors, the National Research Universal (Canada), ceased production on October 31, 2016. The National Research Universal produced approximately 40% of the world’s 99Mo supply, so with its shut down, shortages of 99Mo/99mTc are expected. Methods: Nuclear pharmacies and nuclear medicine departments throughout the United States were contacted and asked to provide their strategies for coping with a shortage of 99Mo/99mTc. Each of these strategies was evaluated on the basis of its effectiveness for conserving 99mTc while still meeting the needs of the patients. Results: From the responses, the following 6 categories of strategies, in order of importance, were compiled: contractual agreements with commercial nuclear pharmacies, alternative imaging protocols, changes in imaging schedules, software use, generator management, and reduction of ordered doses or elimination of backup doses. Conclusion: The supply chain of 99Mo/99mTc is quite fragile; therefore, being aware of the most appropriate coping strategies is crucial. It is essential to build a strong collaboration between the nuclear pharmacy and nuclear medicine department during a shortage situation. With both nuclear medicine departments and nuclear pharmacies implementing viable strategies, such as the ones proposed, the amount of 99mTc available during a shortage situation can be maximized.","PeriodicalId":22799,"journal":{"name":"The Journal of Nuclear Medicine Technology","volume":"58 1","pages":"1 - 5"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nuclear Medicine Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnmt.116.185454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

99mTc, the most common radioisotope used in nuclear medicine, is produced in a nuclear reactor from the decay of 99Mo. There are only a few aging nuclear reactors around the world that produce 99Mo, and one of the major contributors, the National Research Universal (Canada), ceased production on October 31, 2016. The National Research Universal produced approximately 40% of the world’s 99Mo supply, so with its shut down, shortages of 99Mo/99mTc are expected. Methods: Nuclear pharmacies and nuclear medicine departments throughout the United States were contacted and asked to provide their strategies for coping with a shortage of 99Mo/99mTc. Each of these strategies was evaluated on the basis of its effectiveness for conserving 99mTc while still meeting the needs of the patients. Results: From the responses, the following 6 categories of strategies, in order of importance, were compiled: contractual agreements with commercial nuclear pharmacies, alternative imaging protocols, changes in imaging schedules, software use, generator management, and reduction of ordered doses or elimination of backup doses. Conclusion: The supply chain of 99Mo/99mTc is quite fragile; therefore, being aware of the most appropriate coping strategies is crucial. It is essential to build a strong collaboration between the nuclear pharmacy and nuclear medicine department during a shortage situation. With both nuclear medicine departments and nuclear pharmacies implementing viable strategies, such as the ones proposed, the amount of 99mTc available during a shortage situation can be maximized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决99Mo/99mTc短缺问题的潜在途径
99mTc是核医学中最常用的放射性同位素,是在核反应堆中由99Mo衰变产生的。世界上只有少数几个老化的核反应堆可以生产99Mo,其中一个主要贡献者,加拿大国家通用研究中心于2016年10月31日停止生产。国家通用研究公司生产的99Mo约占全球供应量的40%,因此随着其关闭,预计99Mo/99mTc将出现短缺。方法:联系美国各地的核药房和核医学部门,提供应对99Mo/99mTc短缺的策略。每一种策略都是根据其保存99mTc的有效性来评估的,同时仍然满足患者的需求。结果:从回复中,按重要性排序,整理出以下6类策略:与商业核药房签订合同协议、替代成像方案、改变成像时间表、软件使用、发电机管理、减少订购剂量或取消备用剂量。结论:99Mo/99mTc的供应链相当脆弱;因此,了解最合适的应对策略是至关重要的。在人才短缺的情况下,核药学与核医学部门之间建立强有力的合作关系至关重要。随着核医学部门和核药房实施可行的策略,例如所提出的策略,在短缺情况下可用的99mTc数量可以最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diuretic Renal Scintigraphy Stability Matters: Radiochemical Stability of Therapeutic Radiopharmaceutical 177Lu-PSMA I&T Small-Bowel and Colon Transit SNMMI Procedure Standard/EANM Practice Guideline for Molecular Breast Imaging with Dedicated γ-Cameras SNMMI Clinical Trials Network Research Series for Technologists: Clinical Research Primer—Regulatory Process, Part II: The Role of the Institutional Review Board in Food and Drug Administration–Regulated Radiopharmaceutical Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1