B. Scarino, K. Itterly, Kristopher Bedka, C. Homeyer, J. Allen, S. Bang, Daniel J. Cecil
{"title":"Deriving Severe Hail Likelihood from Satellite Observations and Model Reanalysis Parameters using a Deep Neural Network","authors":"B. Scarino, K. Itterly, Kristopher Bedka, C. Homeyer, J. Allen, S. Bang, Daniel J. Cecil","doi":"10.1175/aies-d-22-0042.1","DOIUrl":null,"url":null,"abstract":"\nGeostationary satellite imagers provide historical and near-real-time observations of cloud top patterns that are commonly associated with severe convection. Environmental conditions favorable for severe weather are thought to be represented well by reanalyses. Predicting exactly where convection and costly storm hazards like hail will occur using models or satellite imagery alone, however, is extremely challenging. The multivariate combination of satellite-observed cloud patterns with reanalysis environmental parameters, linked to Next Generation Weather Radar- (NEXRAD-) estimated Maximum Expected Size of Hail (MESH) using a deep neural network (DNN), enables estimation of potentially severe hail likelihood for any observed storm cell. These estimates are made where satellites observe cold clouds, indicative of convection, located in favorable storm environments. We seek an approach that can be used to estimate climatological hailstorm frequency and risk throughout the historical satellite data record.\nStatistical distributions of convective parameters from satellite and reanalysis show separation between non-severe/severe hailstorm classes for predictors including overshooting cloud top temperature and area characteristics, vertical wind shear, and convective inhibition. These complex, multivariate predictor relationships are exploited within a DNN to produce a likelihood estimate with a critical success index of 0.511 and Heidke skill score of 0.407, which is exceptional among analogous hail studies. Furthermore, applications of the DNN to case studies demonstrate good qualitative agreement between hail likelihood and MESH. These hail classifications are aggregated across an 11-year GOES-12/13 image database to derive a hail frequency and severity climatology, which denotes the Central Plains, the Midwest, and northwestern Mexico as being the most hail-prone regions within the domain studied.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0042.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Geostationary satellite imagers provide historical and near-real-time observations of cloud top patterns that are commonly associated with severe convection. Environmental conditions favorable for severe weather are thought to be represented well by reanalyses. Predicting exactly where convection and costly storm hazards like hail will occur using models or satellite imagery alone, however, is extremely challenging. The multivariate combination of satellite-observed cloud patterns with reanalysis environmental parameters, linked to Next Generation Weather Radar- (NEXRAD-) estimated Maximum Expected Size of Hail (MESH) using a deep neural network (DNN), enables estimation of potentially severe hail likelihood for any observed storm cell. These estimates are made where satellites observe cold clouds, indicative of convection, located in favorable storm environments. We seek an approach that can be used to estimate climatological hailstorm frequency and risk throughout the historical satellite data record.
Statistical distributions of convective parameters from satellite and reanalysis show separation between non-severe/severe hailstorm classes for predictors including overshooting cloud top temperature and area characteristics, vertical wind shear, and convective inhibition. These complex, multivariate predictor relationships are exploited within a DNN to produce a likelihood estimate with a critical success index of 0.511 and Heidke skill score of 0.407, which is exceptional among analogous hail studies. Furthermore, applications of the DNN to case studies demonstrate good qualitative agreement between hail likelihood and MESH. These hail classifications are aggregated across an 11-year GOES-12/13 image database to derive a hail frequency and severity climatology, which denotes the Central Plains, the Midwest, and northwestern Mexico as being the most hail-prone regions within the domain studied.