Three class emotions recognition based on deep learning using staked autoencoder

Banghua Yang, Xu Han, Jianzhen Tang
{"title":"Three class emotions recognition based on deep learning using staked autoencoder","authors":"Banghua Yang, Xu Han, Jianzhen Tang","doi":"10.1109/CISP-BMEI.2017.8302098","DOIUrl":null,"url":null,"abstract":"Emotion recognition is a hot spot in advanced humancomputer interaction system, which is of great significance in artificial intelligence, health care, distance education, military field and so on. The paper builds a stacked autoencoder deep learning classification network consist of an input layer, two autoencoder hidden layers and a softmax classifier output layer based on SJTU Emotion EEG Dataset (SEED). Pretrain the first autoencoder employed L-BFGS to optimize the cost function. Then pretrain the second autoencoder with the output of first autoencoder. Finally send to the softmax classifier. Pretrain each autoencoder in forward propagation, then fine-tuning the whole network in back propagation. The well-trained network is used to classify three emotion states including happy, neural and grief. The raw inputs are differential entropy of EEG signal in five rhythmic frequencies band and the differential entropy of whole EEG signal. Fourteen experiments are performed with 5-fold cross validation, the average classification accuracy of three class emotion states is 59.6%, 66.27%, 71.97%, 78.48%, 82.56% and 85.5%. The result shows the higher frequency band differential entropy like Gamma band is more relative to emotion reaction.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"21 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Emotion recognition is a hot spot in advanced humancomputer interaction system, which is of great significance in artificial intelligence, health care, distance education, military field and so on. The paper builds a stacked autoencoder deep learning classification network consist of an input layer, two autoencoder hidden layers and a softmax classifier output layer based on SJTU Emotion EEG Dataset (SEED). Pretrain the first autoencoder employed L-BFGS to optimize the cost function. Then pretrain the second autoencoder with the output of first autoencoder. Finally send to the softmax classifier. Pretrain each autoencoder in forward propagation, then fine-tuning the whole network in back propagation. The well-trained network is used to classify three emotion states including happy, neural and grief. The raw inputs are differential entropy of EEG signal in five rhythmic frequencies band and the differential entropy of whole EEG signal. Fourteen experiments are performed with 5-fold cross validation, the average classification accuracy of three class emotion states is 59.6%, 66.27%, 71.97%, 78.48%, 82.56% and 85.5%. The result shows the higher frequency band differential entropy like Gamma band is more relative to emotion reaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的三类情绪识别
情感识别是先进人机交互系统中的一个热点,在人工智能、医疗卫生、远程教育、军事等领域具有重要意义。基于上海交通大学情绪脑电图数据集(SEED),构建了一个由一个输入层、两个自编码器隐藏层和一个softmax分类器输出层组成的堆叠式自编码器深度学习分类网络。采用L-BFGS对第一个自编码器进行预训练,优化代价函数。然后用第一自编码器的输出对第二自编码器进行预训练。最后发送给softmax分类器。在前向传播中预训练每个自编码器,然后在反向传播中微调整个网络。这个训练有素的网络被用来对三种情绪状态进行分类,包括快乐、神经和悲伤。原始输入是脑电信号在五个节奏频带的微分熵和整个脑电信号的微分熵。共进行了14次5重交叉验证实验,3类情绪状态的平均分类准确率分别为59.6%、66.27%、71.97%、78.48%、82.56%和85.5%。结果表明,伽马波段等较高频带的微分熵与情绪反应的关系更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1