Late Holocene cryptotephra and a provisional 15 000-year Bayesian age model for Cascade Lake, Alaska

IF 2.7 Q2 GEOCHEMISTRY & GEOPHYSICS Geochronology Pub Date : 2022-03-11 DOI:10.5194/gchron-4-121-2022
Lauren J. Davies, B. Jensen, D. Kaufman
{"title":"Late Holocene cryptotephra and a provisional 15 000-year Bayesian age model for Cascade Lake, Alaska","authors":"Lauren J. Davies, B. Jensen, D. Kaufman","doi":"10.5194/gchron-4-121-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Multiple chronometers can be employed for dating Holocene\npalaeoenvironmental records, each with its own inherent strengths and\nweaknesses. Radiocarbon dating is one of the most widely used techniques for\nproducing chronologies, but its application at high-latitude sites can\nsometimes be problematic. Here, cryptotephra were identified in a core from\nCascade Lake, Arctic Alaska, and used to identify and resolve an age bias in\nLate Holocene radiocarbon dates from the top 1.42 m of the sediment\nsequence. Identifiable geochemical populations of cryptotephra are shown to\nbe present in detectable concentrations in sediment from the north flank of\nthe Brooks Range for the first time. Major-element glass geochemical\ncorrelations are demonstrated between ultra-distal cryptotephra and\nreference samples from the Late Holocene caldera-forming eruption of Opala,\nKamchatka, as well as three eruptions in North America: the White River Ash\n(northern lobe), Ruppert tephra and the Late Holocene caldera-forming\neruption of Aniakchak. The correlated ages of these cryptotephra provide\nevidence for an old-carbon effect and support preliminary palaeomagnetic\nsecular variation (PSV) correlated ages reported for Cascade Lake.\nChronological data from Cascade Lake were then combined using a Bayesian\napproach to generate an age–depth model that extends back through the Late\nHolocene and provisionally to 15 000 cal yr BP.\n","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gchron-4-121-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Multiple chronometers can be employed for dating Holocene palaeoenvironmental records, each with its own inherent strengths and weaknesses. Radiocarbon dating is one of the most widely used techniques for producing chronologies, but its application at high-latitude sites can sometimes be problematic. Here, cryptotephra were identified in a core from Cascade Lake, Arctic Alaska, and used to identify and resolve an age bias in Late Holocene radiocarbon dates from the top 1.42 m of the sediment sequence. Identifiable geochemical populations of cryptotephra are shown to be present in detectable concentrations in sediment from the north flank of the Brooks Range for the first time. Major-element glass geochemical correlations are demonstrated between ultra-distal cryptotephra and reference samples from the Late Holocene caldera-forming eruption of Opala, Kamchatka, as well as three eruptions in North America: the White River Ash (northern lobe), Ruppert tephra and the Late Holocene caldera-forming eruption of Aniakchak. The correlated ages of these cryptotephra provide evidence for an old-carbon effect and support preliminary palaeomagnetic secular variation (PSV) correlated ages reported for Cascade Lake. Chronological data from Cascade Lake were then combined using a Bayesian approach to generate an age–depth model that extends back through the Late Holocene and provisionally to 15 000 cal yr BP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿拉斯加州喀斯喀特湖晚全新世隐球菌和临时15000年贝叶斯年龄模型
摘要多个计时器可用于确定全新世环境记录的年代,每个计时器都有其固有的优点和缺点。放射性碳定年法是制作年表最广泛使用的技术之一,但它在高纬度地区的应用有时会有问题。在阿拉斯加北极喀斯喀特湖的岩心中发现了隐隐菌,并用于识别和解决沉积序列顶部1.42 m的晚全新世放射性碳年代的年龄偏差。在布鲁克斯山脉北侧的沉积物中,首次发现了可识别的隐球菌地球化学种群。在堪察加半岛的奥帕拉(Opala)晚全新世破火山口喷发以及北美的白河火山灰(北叶)、鲁珀特火山(Ruppert tephra)和阿尼亚恰克(Aniakchak)晚全新世破火山口喷发的三次火山喷发中,证明了超远端隐火山与参考样品之间的主元素玻璃地球化学相关性。这些隐体的相关年龄为古碳效应提供了证据,并支持了喀斯喀特湖初步报道的古地磁-长期变化(PSV)相关年龄。然后,利用贝叶斯方法将喀斯喀特湖的年代数据结合起来,生成了一个年龄深度模型,该模型可以追溯到晚全新世,暂时可以追溯到15,000 calybp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochronology
Geochronology Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
0.00%
发文量
35
审稿时长
19 weeks
期刊最新文献
The daughter–parent plot: a tool for analyzing thermochronological data New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA Errorchrons and anchored isochrons in IsoplotR Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1