Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution

Huaibo Huang, R. He, Zhenan Sun, T. Tan
{"title":"Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution","authors":"Huaibo Huang, R. He, Zhenan Sun, T. Tan","doi":"10.1109/ICCV.2017.187","DOIUrl":null,"url":null,"abstract":"Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"55 1","pages":"1698-1706"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"336","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 336

Abstract

Most modern face super-resolution methods resort to convolutional neural networks (CNN) to infer highresolution (HR) face images. When dealing with very low resolution (LR) images, the performance of these CNN based methods greatly degrades. Meanwhile, these methods tend to produce over-smoothed outputs and miss some textural details. To address these challenges, this paper presents a wavelet-based CNN approach that can ultra-resolve a very low resolution face image of 16 × 16 or smaller pixelsize to its larger version of multiple scaling factors (2×, 4×, 8× and even 16×) in a unified framework. Different from conventional CNN methods directly inferring HR images, our approach firstly learns to predict the LR’s corresponding series of HR’s wavelet coefficients before reconstructing HR images from them. To capture both global topology information and local texture details of human faces, we present a flexible and extensible convolutional neural network with three types of loss: wavelet prediction loss, texture loss and full-image loss. Extensive experiments demonstrate that the proposed approach achieves more appealing results both quantitatively and qualitatively than state-ofthe- art super-resolution methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小波- srnet:一种基于小波的多尺度人脸超分辨率CNN
大多数现代人脸超分辨率方法采用卷积神经网络(CNN)来推断高分辨率人脸图像。当处理极低分辨率(LR)图像时,这些基于CNN的方法的性能会大大下降。同时,这些方法容易产生过于平滑的输出,而忽略了一些纹理细节。为了解决这些挑战,本文提出了一种基于小波的CNN方法,该方法可以在统一的框架内将16× 16或更小像素的极低分辨率人脸图像超分辨率分解为多个缩放因子(2×、4×、8×甚至16×)的大版本。与传统的CNN直接推断HR图像的方法不同,我们的方法首先学习预测LR对应的HR小波系数序列,然后再从HR图像中重建HR图像。为了捕获人脸的全局拓扑信息和局部纹理细节,我们提出了一种灵活可扩展的卷积神经网络,该网络具有三种类型的损失:小波预测损失、纹理损失和全图损失。大量的实验表明,该方法在定量和定性上都比目前最先进的超分辨率方法取得了更令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1