Deep Learning-Based Machine Color Emotion Generation

Tongyao Nie, Xinguang Lv
{"title":"Deep Learning-Based Machine Color Emotion Generation","authors":"Tongyao Nie, Xinguang Lv","doi":"10.4018/ijmcmc.325349","DOIUrl":null,"url":null,"abstract":"This paper investigates generating machine color emotion through deep learning. The grayscale image colorization model's training process resembles human memory color. Sixty images were recolored and quality evaluated to explore machine generated color impressions. Six experimental samples were recolored under D65, A, CWF, and TL84 light sources. Changes in lightness, chroma, and hue angle compared the original and colorized images, exploring light source effects on machine color perception. Analyzing differences in coloring results within the CIEL* a* b* color space for pixels with equal grayscale verified machine color emotion generation. Results show the machine learns to form color impressions from samples. Different light source color temperatures impact color prediction accuracy. The machine accurately colors images based on semantic context, demonstrating spontaneous color emotion generation through deep learning. This research positively contributes to the development of intelligent devices with color emotion.","PeriodicalId":43265,"journal":{"name":"International Journal of Mobile Computing and Multimedia Communications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Computing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmcmc.325349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates generating machine color emotion through deep learning. The grayscale image colorization model's training process resembles human memory color. Sixty images were recolored and quality evaluated to explore machine generated color impressions. Six experimental samples were recolored under D65, A, CWF, and TL84 light sources. Changes in lightness, chroma, and hue angle compared the original and colorized images, exploring light source effects on machine color perception. Analyzing differences in coloring results within the CIEL* a* b* color space for pixels with equal grayscale verified machine color emotion generation. Results show the machine learns to form color impressions from samples. Different light source color temperatures impact color prediction accuracy. The machine accurately colors images based on semantic context, demonstrating spontaneous color emotion generation through deep learning. This research positively contributes to the development of intelligent devices with color emotion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的机器色彩情感生成
本文研究了通过深度学习生成机器色彩情感的方法。灰度图像着色模型的训练过程类似于人类记忆颜色。60幅图像被重新着色和质量评估,以探索机器产生的色彩印象。在D65、A、CWF和TL84光源下对6个实验样品进行重显色。亮度、色度和色调角度的变化比较了原始图像和彩色图像,探索光源对机器色彩感知的影响。分析具有等灰度像素的CIEL* a* b*色彩空间内着色结果的差异,验证机器颜色情感生成。结果显示,这台机器学会了从样本中形成颜色印象。不同的光源色温会影响颜色预测的准确性。该机器根据语义上下文准确地为图像上色,通过深度学习展示自发的颜色情感生成。本研究对色彩情感智能设备的开发具有积极的促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
23
期刊最新文献
The Role of the Combination of 3D Simulation Sequence Diagram and Video Motion Recognition Technology in Evaluating and Correcting Dancers' Dance Moves Fuzzy Learning-Based Electric Measurement Data Circulation Monitoring and Security Risk Anomaly Evaluation Youth Sources of News During the COVID-19 Period An End-to-End Network Evaluation Method for Differentiated Multi-Service Bearing in VPP Biometric Authentication Methods on Mobile Platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1