Acute exposure to an electric field induces changes in human plasma lysophosphatidylcholine (lysoPC)-22:4 levels: Molecular insight into the docking of lysoPC-22:4 interaction with TRPV2
Y. Nakagawa-Yagi, H. Hara, H. Nakanishi, T. Tasaka, A. Hara
{"title":"Acute exposure to an electric field induces changes in human plasma lysophosphatidylcholine (lysoPC)-22:4 levels: Molecular insight into the docking of lysoPC-22:4 interaction with TRPV2","authors":"Y. Nakagawa-Yagi, H. Hara, H. Nakanishi, T. Tasaka, A. Hara","doi":"10.15761/IMM.1000274","DOIUrl":null,"url":null,"abstract":"Medical treatment using high-voltage electric potential (HELP) devices to generate an electric field (EF) is an alternative therapy commonly used in Japan. However, the underlying mechanisms of the potential health benefits are not fully understood. To address this issue, we investigated the levels of lyso-form phospholipids using selected reaction monitoring (SRM) analysis in plasma samples obtained from healthy human subjects before and after a single HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min). Lysophosphatidylcholine (lysoPC)-22:4 was significantly upregulated after HELP exposure. However, there was no effect on the levels of lysophosphatidic acid (lysoPA), or other lysoPC species. LysoPC is known to accelerate intestinal movement as a putative endogenous activator of transient receptor potential vanilloid 2 (TRPV2). We further examined the in silico docking simulation of lysoPC-22:4 with TRPV2. Docking results showed that lysoPC-22:4 has good binding energy (-8.2 kcal/mol). Our findings provide new insight into the molecular mechanisms of constipation alleviation by EF therapy.","PeriodicalId":94322,"journal":{"name":"Integrative molecular medicine","volume":"65 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/IMM.1000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Medical treatment using high-voltage electric potential (HELP) devices to generate an electric field (EF) is an alternative therapy commonly used in Japan. However, the underlying mechanisms of the potential health benefits are not fully understood. To address this issue, we investigated the levels of lyso-form phospholipids using selected reaction monitoring (SRM) analysis in plasma samples obtained from healthy human subjects before and after a single HELP exposure (9 kV/electrode + 9 kV/electrode, 30 min). Lysophosphatidylcholine (lysoPC)-22:4 was significantly upregulated after HELP exposure. However, there was no effect on the levels of lysophosphatidic acid (lysoPA), or other lysoPC species. LysoPC is known to accelerate intestinal movement as a putative endogenous activator of transient receptor potential vanilloid 2 (TRPV2). We further examined the in silico docking simulation of lysoPC-22:4 with TRPV2. Docking results showed that lysoPC-22:4 has good binding energy (-8.2 kcal/mol). Our findings provide new insight into the molecular mechanisms of constipation alleviation by EF therapy.