Pascal Knierim, Dimitri Hein, A. Schmidt, T. Kosch
{"title":"The SmARtphone Controller","authors":"Pascal Knierim, Dimitri Hein, A. Schmidt, T. Kosch","doi":"10.1515/icom-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract Current interaction modalities for mobile Augmented Reality (AR) are tedious and lack expressiveness. To overcome these prevalent limitations, we developed and evaluated a multimodal interaction concept by pairing a smartphone as an input and output modality for mobile AR. In a user study (n = 24), we investigated the effects on interaction speed, accuracy, and task load for (1) virtual object manipulation as well as (2) interaction with established graphical user interfaces (GUIs). Our findings show that a smartphone-based AR controller results in significantly faster and more accurate object manipulation with reduced task load than state-of-art mid-air gestures. Our results also indicate a significant enhancement for using the physical touchscreen as a modality compared to mid-air gestures for GUI interaction. We conclude that interaction in mobile AR environments can be improved by utilizing a smartphone as an omnipresent controller. Additionally, we discuss how future AR systems can benefit from tangible touchscreens as an additional and complementary interaction modality.","PeriodicalId":37105,"journal":{"name":"i-com","volume":"31 1","pages":"49 - 61"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-com","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/icom-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 13
Abstract
Abstract Current interaction modalities for mobile Augmented Reality (AR) are tedious and lack expressiveness. To overcome these prevalent limitations, we developed and evaluated a multimodal interaction concept by pairing a smartphone as an input and output modality for mobile AR. In a user study (n = 24), we investigated the effects on interaction speed, accuracy, and task load for (1) virtual object manipulation as well as (2) interaction with established graphical user interfaces (GUIs). Our findings show that a smartphone-based AR controller results in significantly faster and more accurate object manipulation with reduced task load than state-of-art mid-air gestures. Our results also indicate a significant enhancement for using the physical touchscreen as a modality compared to mid-air gestures for GUI interaction. We conclude that interaction in mobile AR environments can be improved by utilizing a smartphone as an omnipresent controller. Additionally, we discuss how future AR systems can benefit from tangible touchscreens as an additional and complementary interaction modality.