Hong-liang Chu, Chun-Xiao Li, Xiao-xia Guo, Heng-duan Zhang, Peng Luo, Zhonghua Wu, Gang Wang, T. Zhao
{"title":"The phylogenetic relationships of known mosquito (Diptera: Culicidae) mitogenomes","authors":"Hong-liang Chu, Chun-Xiao Li, Xiao-xia Guo, Heng-duan Zhang, Peng Luo, Zhonghua Wu, Gang Wang, T. Zhao","doi":"10.1080/24701394.2016.1233533","DOIUrl":null,"url":null,"abstract":"Abstract The known mosquito mitogenomes, containing a total of 34 species, which belong to five genera, were collected from GenBank, and the practicality and effectiveness of the variation in the complete mitochondrial DNA genome and portions of mitochondrial COI gene were assessed to reconstruct the phylogeny of mosquitoes. Phylogenetic trees were reconstructed on the basis of parsimony, maximum likelihood, and Bayesian (BI) methods. It is concluded that: (1) Both mitogenomes and COI gene support the monophly of following taxa: Subgenus Nyssorhynchus, Subgenus Cellia, Anopheles albitarsis complex, Anopheles gambiae complex, and Anopheles punctulatus group; (2) Genus Aedes is not monophyletic relative to Ochlerotatus vigilax; (3) The mitogenome results indicate a close relationship between Anopheles epiroticus and Anopheles gambiae complex, Anopheles dirus complex and Anopheles punctulatus group, respectively; (4) The Bayesian posterior probability (BPP) within phylogenetic tree reconstructed by mitogenomes is higher than COI tree. The results show that phylogenetic relationships reconstructed using the mitogenomes were more similar to those based on morphological data.","PeriodicalId":54298,"journal":{"name":"Mitochondrial Dna Part a","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna Part a","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24701394.2016.1233533","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 14
Abstract
Abstract The known mosquito mitogenomes, containing a total of 34 species, which belong to five genera, were collected from GenBank, and the practicality and effectiveness of the variation in the complete mitochondrial DNA genome and portions of mitochondrial COI gene were assessed to reconstruct the phylogeny of mosquitoes. Phylogenetic trees were reconstructed on the basis of parsimony, maximum likelihood, and Bayesian (BI) methods. It is concluded that: (1) Both mitogenomes and COI gene support the monophly of following taxa: Subgenus Nyssorhynchus, Subgenus Cellia, Anopheles albitarsis complex, Anopheles gambiae complex, and Anopheles punctulatus group; (2) Genus Aedes is not monophyletic relative to Ochlerotatus vigilax; (3) The mitogenome results indicate a close relationship between Anopheles epiroticus and Anopheles gambiae complex, Anopheles dirus complex and Anopheles punctulatus group, respectively; (4) The Bayesian posterior probability (BPP) within phylogenetic tree reconstructed by mitogenomes is higher than COI tree. The results show that phylogenetic relationships reconstructed using the mitogenomes were more similar to those based on morphological data.
期刊介绍:
Mitochondrial DNA Part A publishes original high-quality manuscripts on physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism, and/or interactions. Manuscripts on cytosolic and extracellular mtDNA, and on dysfunction caused by alterations in mtDNA integrity as well as methodological papers detailing novel approaches for mtDNA manipulation in vitro and in vivo are welcome. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The Journal also considers manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences, as well as papers that discuss the utility of mitochondrial DNA information in medical studies and in human evolutionary biology.