A New Method to Find Top K Items in Data Streams at Arbitrary Time Granularities

Shu Pingda, Chen Hua-hui
{"title":"A New Method to Find Top K Items in Data Streams at Arbitrary Time Granularities","authors":"Shu Pingda, Chen Hua-hui","doi":"10.1109/CSSE.2008.973","DOIUrl":null,"url":null,"abstract":"Finding top K items in data streams means finding K items whose frequence are larger than other items in data streams. There are some methods to find most frequent K items in the whole data streams, but they can't be used in arbitrary time interval. This paper proposes a new method-MMF(K)_MS to find most frequent K items based on Hierarchical Synopsis. MMF(K)_MS supports query in arbitrary time interval through using HFVN framework with variable number of node in every layer and using Count Stretch data structure to maintain Synopsis in each layer. At Last, Proving MMF(K)_MS rational and available by experiment.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"31 1","pages":"267-270"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSSE.2008.973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Finding top K items in data streams means finding K items whose frequence are larger than other items in data streams. There are some methods to find most frequent K items in the whole data streams, but they can't be used in arbitrary time interval. This paper proposes a new method-MMF(K)_MS to find most frequent K items based on Hierarchical Synopsis. MMF(K)_MS supports query in arbitrary time interval through using HFVN framework with variable number of node in every layer and using Count Stretch data structure to maintain Synopsis in each layer. At Last, Proving MMF(K)_MS rational and available by experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
任意时间粒度数据流中Top K项的一种新方法
在数据流中查找top K项意味着查找K个频率大于数据流中其他项的项。有一些方法可以在整个数据流中找到最频繁的K项,但它们不能在任意的时间间隔内使用。本文提出了一种基于层次概要的寻找最频繁K项的新方法——mmf (K)_MS。MMF(K)_MS通过使用每层节点数可变的HFVN框架,使用Count Stretch数据结构维护每层的Synopsis,支持任意时间间隔的查询。最后,通过实验证明了MMF(K)_MS的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1