A new localization method based on improved particle swarm optimization for wireless sensor networks

IET Softw. Pub Date : 2021-05-04 DOI:10.1049/SFW2.12027
Qiaohe Yang
{"title":"A new localization method based on improved particle swarm optimization for wireless sensor networks","authors":"Qiaohe Yang","doi":"10.1049/SFW2.12027","DOIUrl":null,"url":null,"abstract":"Qiaohe Yang, No.2, Lane 228, Hezheng Road, Jiading District, Shanghai, China. Email: qiaoheyang@126.com Abstract Wireless sensor network (WSN) node localisation technology based on received signal strength indication (RSSI) is widely used as it does not need additional hardware devices. The ranging accuracy of RSSI is poor, and the particle swarm optimisation (PSO) algorithm can effectively improve the positioning accuracy of RSSI. However, the particle swarm diversity of the PSO algorithm is easy to lose quickly and fall into local optimal solution in the iterative process. Based on the convergence conditions and initial search space characteristics of the PSO algorithm in WSN localisation, an improved PSO algorithm (improved self‐adaptive inertia weight particle swarm optimisation [ISAPSO]) is proposed. Compared with the other two PSO location estimation algorithms, the ISAPSO location estimation algorithm has good performance in positioning accuracy, power consumption and real‐time performance under different beacon node proportions, node densities and ranging errors.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"37 1","pages":"251-258"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/SFW2.12027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Qiaohe Yang, No.2, Lane 228, Hezheng Road, Jiading District, Shanghai, China. Email: qiaoheyang@126.com Abstract Wireless sensor network (WSN) node localisation technology based on received signal strength indication (RSSI) is widely used as it does not need additional hardware devices. The ranging accuracy of RSSI is poor, and the particle swarm optimisation (PSO) algorithm can effectively improve the positioning accuracy of RSSI. However, the particle swarm diversity of the PSO algorithm is easy to lose quickly and fall into local optimal solution in the iterative process. Based on the convergence conditions and initial search space characteristics of the PSO algorithm in WSN localisation, an improved PSO algorithm (improved self‐adaptive inertia weight particle swarm optimisation [ISAPSO]) is proposed. Compared with the other two PSO location estimation algorithms, the ISAPSO location estimation algorithm has good performance in positioning accuracy, power consumption and real‐time performance under different beacon node proportions, node densities and ranging errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进粒子群优化的无线传感器网络定位新方法
中国上海市嘉定区和正路228弄2号桥和洋摘要基于接收信号强度指示(RSSI)的无线传感器网络(WSN)节点定位技术由于不需要额外的硬件设备而得到了广泛的应用。RSSI的测距精度较差,粒子群优化(PSO)算法可以有效提高RSSI的定位精度。然而,粒子群优化算法的粒子群多样性在迭代过程中容易快速丢失并陷入局部最优解。基于PSO算法在WSN定位中的收敛条件和初始搜索空间特征,提出了一种改进的PSO算法(改进自适应惯性权重粒子群优化[ISAPSO])。与其他两种PSO定位估计算法相比,ISAPSO定位估计算法在不同信标节点比例、节点密度和测距误差下,在定位精度、功耗和实时性方面都具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prioritising test scripts for the testing of memory bloat in web applications A synergic quantum particle swarm optimisation for constrained combinatorial test generation A hybrid model for prediction of software effort based on team size A 20-year mapping of Bayesian belief networks in software project management Emerging and multidisciplinary approaches to software engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1