{"title":"A new localization method based on improved particle swarm optimization for wireless sensor networks","authors":"Qiaohe Yang","doi":"10.1049/SFW2.12027","DOIUrl":null,"url":null,"abstract":"Qiaohe Yang, No.2, Lane 228, Hezheng Road, Jiading District, Shanghai, China. Email: qiaoheyang@126.com Abstract Wireless sensor network (WSN) node localisation technology based on received signal strength indication (RSSI) is widely used as it does not need additional hardware devices. The ranging accuracy of RSSI is poor, and the particle swarm optimisation (PSO) algorithm can effectively improve the positioning accuracy of RSSI. However, the particle swarm diversity of the PSO algorithm is easy to lose quickly and fall into local optimal solution in the iterative process. Based on the convergence conditions and initial search space characteristics of the PSO algorithm in WSN localisation, an improved PSO algorithm (improved self‐adaptive inertia weight particle swarm optimisation [ISAPSO]) is proposed. Compared with the other two PSO location estimation algorithms, the ISAPSO location estimation algorithm has good performance in positioning accuracy, power consumption and real‐time performance under different beacon node proportions, node densities and ranging errors.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"37 1","pages":"251-258"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/SFW2.12027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Qiaohe Yang, No.2, Lane 228, Hezheng Road, Jiading District, Shanghai, China. Email: qiaoheyang@126.com Abstract Wireless sensor network (WSN) node localisation technology based on received signal strength indication (RSSI) is widely used as it does not need additional hardware devices. The ranging accuracy of RSSI is poor, and the particle swarm optimisation (PSO) algorithm can effectively improve the positioning accuracy of RSSI. However, the particle swarm diversity of the PSO algorithm is easy to lose quickly and fall into local optimal solution in the iterative process. Based on the convergence conditions and initial search space characteristics of the PSO algorithm in WSN localisation, an improved PSO algorithm (improved self‐adaptive inertia weight particle swarm optimisation [ISAPSO]) is proposed. Compared with the other two PSO location estimation algorithms, the ISAPSO location estimation algorithm has good performance in positioning accuracy, power consumption and real‐time performance under different beacon node proportions, node densities and ranging errors.