THE MULTILEVEL FAST PHYSICAL OPTICS METHOD FOR CALCULATING HIGH FREQUENCY SCATTERED FIELDS

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy Progress in Electromagnetics Research-Pier Pub Date : 2020-01-01 DOI:10.2528/pier20071203
Zhiyang Xue, Yu Mao Wu, W. Chew, Yaqiu Jin, A. Boag
{"title":"THE MULTILEVEL FAST PHYSICAL OPTICS METHOD FOR CALCULATING HIGH FREQUENCY SCATTERED FIELDS","authors":"Zhiyang Xue, Yu Mao Wu, W. Chew, Yaqiu Jin, A. Boag","doi":"10.2528/pier20071203","DOIUrl":null,"url":null,"abstract":"The multilevel fast physical optics (MLFPO) is proposed to accelerate the computation of the fields scattered from electrically large coated scatterers. This method is based on the quadratic patch subdivision and the multilevel technology. First, the quadratic patches are employed rather than the planar patches to discretize the considered scatterer. Hence, the number of the contributing patches is cut dramatically, thus making the workload of the MLFPO method much lower than that of the traditional Gordon’s method. Next, the multilevel technology is introduced in this work to avoid calculating the physical optics scattered fields from the considered scatterer directly, so that the proposed algorithm can significantly reduce the computational complexity. Finally, numerical results have demonstrated the accuracy and efficiency of the MLFPO method based on the quadratic patches.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"2 1","pages":"1-15"},"PeriodicalIF":6.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/pier20071203","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4

Abstract

The multilevel fast physical optics (MLFPO) is proposed to accelerate the computation of the fields scattered from electrically large coated scatterers. This method is based on the quadratic patch subdivision and the multilevel technology. First, the quadratic patches are employed rather than the planar patches to discretize the considered scatterer. Hence, the number of the contributing patches is cut dramatically, thus making the workload of the MLFPO method much lower than that of the traditional Gordon’s method. Next, the multilevel technology is introduced in this work to avoid calculating the physical optics scattered fields from the considered scatterer directly, so that the proposed algorithm can significantly reduce the computational complexity. Finally, numerical results have demonstrated the accuracy and efficiency of the MLFPO method based on the quadratic patches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算高频散射场的多能级快速物理光学方法
提出了一种多能级快速物理光学(MLFPO)技术,以加速电大型涂层散射体散射场的计算。该方法基于二次补丁细分和多电平技术。首先,采用二次块而不是平面块来离散所考虑的散射体。因此,大大减少了贡献补丁的数量,从而使MLFPO方法的工作量大大低于传统的Gordon方法。其次,本文引入多电平技术,避免了直接从考虑的散射体中计算物理光学散射场,从而大大降低了算法的计算复杂度。最后,数值结果验证了基于二次块的MLFPO方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
期刊最新文献
L-BAND RADAR SCATTERING AND SOIL MOISTURE RETRIEVAL OF WHEAT, CANOLA AND PASTURE FIELDS FOR SMAP ACTIVE ALGORITHMS DESIGNING NANOINCLUSIONS FOR QUANTUM SENSING BASED ON ELECTROMAGNETIC SCATTERING FORMALISM (INVITED PAPER) A FINE SCALE PARTIALLY COHERENT PATCH MODEL INCLUDING TOPOGRAPHICAL EFFECTS FOR GNSS-R DDM SIMULATIONS Directional Polaritonic Excitation of Circular, Huygens and Janus Dipoles in Graphene-Hexagonal Boron Nitride Heterostructures HIGH EFFICIENCY MULTI-FUNCTIONAL ALL-OPTICAL LOGIC GATES BASED ON MIM PLASMONIC WAVEGUIDE STRUCTURE WITH THE KERR-TYPE NONLINEAR NANO-RING RESONATORS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1