A hybrid soft computing technique for intrusion detection in web and cloud environment

K. Maheswari, C. Siva, G. Nalinipriya
{"title":"A hybrid soft computing technique for intrusion detection in web and cloud environment","authors":"K. Maheswari, C. Siva, G. Nalinipriya","doi":"10.1002/cpe.7046","DOIUrl":null,"url":null,"abstract":"Cloud computing environment contains important, essential, or confidential information; therefore, a security solution is needed to prevent this environment from potential attacks. In short, cloud computing has become one of the most sought after technologies in the field of information technology, and among the most dangerous threats. In this article, we propose a hybrid soft computing technique for intrusion detection in web and cloud environment (ST‐IDS). In ST‐IDS, we illustrate whale integrated slap swarm optimization algorithm for pre‐processing which remove the unwanted/repeated data's in dataset. We introduce new clustering technique based on modified tug‐of‐war optimization algorithm which groups the data in different segments. Then, we develop hybrid machine learning technique that is, capsule learning based neural network which categorize the attack in cloud environment. Finally, the proposed ST‐IDS technique can evaluate through standard open source datasets are KDD cup'99 and NSL‐KDD. The performance comparison of the proposed ST‐IDS technique using existing innovative technologies in terms of accuracy, precession, recall, specificity, F measure, false positive rate, and false negative rate.","PeriodicalId":10584,"journal":{"name":"Concurrency and Computation: Practice and Experience","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.7046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud computing environment contains important, essential, or confidential information; therefore, a security solution is needed to prevent this environment from potential attacks. In short, cloud computing has become one of the most sought after technologies in the field of information technology, and among the most dangerous threats. In this article, we propose a hybrid soft computing technique for intrusion detection in web and cloud environment (ST‐IDS). In ST‐IDS, we illustrate whale integrated slap swarm optimization algorithm for pre‐processing which remove the unwanted/repeated data's in dataset. We introduce new clustering technique based on modified tug‐of‐war optimization algorithm which groups the data in different segments. Then, we develop hybrid machine learning technique that is, capsule learning based neural network which categorize the attack in cloud environment. Finally, the proposed ST‐IDS technique can evaluate through standard open source datasets are KDD cup'99 and NSL‐KDD. The performance comparison of the proposed ST‐IDS technique using existing innovative technologies in terms of accuracy, precession, recall, specificity, F measure, false positive rate, and false negative rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于网络和云环境下入侵检测的混合软计算技术
云计算环境包含重要、必要或机密信息;因此,需要一个安全解决方案来防止该环境受到潜在的攻击。简而言之,云计算已经成为信息技术领域中最受追捧的技术之一,也是最危险的威胁之一。在本文中,我们提出了一种混合软计算技术用于网络和云环境下的入侵检测(ST‐IDS)。在ST‐IDS中,我们展示了用于预处理的鲸鱼集成拍打群优化算法,该算法可以去除数据集中不需要的/重复的数据。本文介绍了一种基于改进的拔河优化算法的聚类技术,该算法将数据分组在不同的片段中。然后,我们开发了混合机器学习技术,即基于胶囊学习的神经网络,对云环境下的攻击进行分类。最后,本文提出的ST‐IDS技术可以通过KDD cup'99和NSL‐KDD等标准开源数据集进行评估。在准确性、进动率、召回率、特异性、F测量值、假阳性率和假阴性率方面,对现有创新技术的ST‐IDS技术进行性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time‐based DDoS attack detection through hybrid LSTM‐CNN model architectures: An investigation of many‐to‐one and many‐to‐many approaches Distributed low‐latency broadcast scheduling for multi‐channel duty‐cycled wireless IoT networks Open‐domain event schema induction via weighted attentive hypergraph neural network Fused GEMMs towards an efficient GPU implementation of the ADER‐DG method in SeisSol Simulation method for infrared radiation transmission characteristics of typical ship targets based on optical remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1