D. C. R. Novitasari, Putri Wulandari, Dina Zatusiva Haq
{"title":"Cervical Cancer Diagnosis System using Convolutional Neural Network ResidualNet","authors":"D. C. R. Novitasari, Putri Wulandari, Dina Zatusiva Haq","doi":"10.47839/ijc.21.1.2518","DOIUrl":null,"url":null,"abstract":"Cervical cancer is a deadly disease attacking women. It represents 6.6% of all female cancers. The stadium of cervical cancer is determined based on the presence of carcinoma. The cervical cancer classification system can be used to help medical workers to analyze the stadium of cervical cancer. In this study, cervical cancer stages were divided into five classes, namely, normal cervix, stadium I, stadium II, stadium III, and stadium IV based on colposcopy images. The proposed method is one of deep learning methods, that is convolutional neural network (CNN) using deep residual network (ResidualNet) architecture. This study compared ResidualNet-18, ResidualNet-50, and ResidualNet-101 models and some conventional methods. The comparison results show that ResidualNet is more accurate than conventional methods. From the experiment, based on the accuracy value and elapsed time, ResidualNet-50 is worth using for cervical cancer classification. The result of this evaluation is higher than the maximum achievement of the ResidualNet-18 architecture. In addition, the elapsed time of the classification process using the ResidualNet-50 architecture with the accuracy, sensitivity, and specificity values reaching 100% is shorter than ResidualNet-101, which is 4397 s.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.1.2518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
Cervical cancer is a deadly disease attacking women. It represents 6.6% of all female cancers. The stadium of cervical cancer is determined based on the presence of carcinoma. The cervical cancer classification system can be used to help medical workers to analyze the stadium of cervical cancer. In this study, cervical cancer stages were divided into five classes, namely, normal cervix, stadium I, stadium II, stadium III, and stadium IV based on colposcopy images. The proposed method is one of deep learning methods, that is convolutional neural network (CNN) using deep residual network (ResidualNet) architecture. This study compared ResidualNet-18, ResidualNet-50, and ResidualNet-101 models and some conventional methods. The comparison results show that ResidualNet is more accurate than conventional methods. From the experiment, based on the accuracy value and elapsed time, ResidualNet-50 is worth using for cervical cancer classification. The result of this evaluation is higher than the maximum achievement of the ResidualNet-18 architecture. In addition, the elapsed time of the classification process using the ResidualNet-50 architecture with the accuracy, sensitivity, and specificity values reaching 100% is shorter than ResidualNet-101, which is 4397 s.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.