3D Vision Aided GNSS Real-Time Kinematic Positioning for Autonomous Systems in Urban Canyons

IF 3.1 3区 地球科学 Q1 ENGINEERING, AEROSPACE Navigation-Journal of the Institute of Navigation Pub Date : 2023-01-01 DOI:10.33012/navi.590
W. Wen, X. Bai, L. Hsu
{"title":"3D Vision Aided GNSS Real-Time Kinematic Positioning for Autonomous Systems in Urban Canyons","authors":"W. Wen, X. Bai, L. Hsu","doi":"10.33012/navi.590","DOIUrl":null,"url":null,"abstract":"In this paper, a three-dimensional vision-aided method is proposed to improve global navigation satellite system (GNSS) real-time kinematic (RTK) positioning. To mitigate the impact of reflected non-line-of-sight (NLOS) reception, a sky-pointing camera with a deep neural network was employed to exclude these measurements. However, NLOS exclusion results in distorted satellite geometry. To fill this gap, complementarity between the low-lying visual landmarks and the healthy but high-elevation satellite measurements was explored to improve the geometric constraints. Specifically, inertial measurement units, visual landmarks captured by a forward-looking camera, and healthy GNSS measurements were tightly integrated via sliding window optimization to estimate the GNSS-RTK float solution. The integer ambiguities and the fixed GNSS-RTK solution were then resolved. The effectiveness of the proposed method was verified using several challenging data sets collected in urban canyons in Hong Kong.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.590","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a three-dimensional vision-aided method is proposed to improve global navigation satellite system (GNSS) real-time kinematic (RTK) positioning. To mitigate the impact of reflected non-line-of-sight (NLOS) reception, a sky-pointing camera with a deep neural network was employed to exclude these measurements. However, NLOS exclusion results in distorted satellite geometry. To fill this gap, complementarity between the low-lying visual landmarks and the healthy but high-elevation satellite measurements was explored to improve the geometric constraints. Specifically, inertial measurement units, visual landmarks captured by a forward-looking camera, and healthy GNSS measurements were tightly integrated via sliding window optimization to estimate the GNSS-RTK float solution. The integer ambiguities and the fixed GNSS-RTK solution were then resolved. The effectiveness of the proposed method was verified using several challenging data sets collected in urban canyons in Hong Kong.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市峡谷中自主系统的三维视觉辅助GNSS实时运动定位
提出了一种三维视觉辅助的全球卫星导航系统(GNSS)实时运动定位方法。为了减轻反射的非视距(NLOS)接收的影响,使用了一个带有深度神经网络的指向天空的相机来排除这些测量。然而,NLOS的排除导致了卫星几何形状的扭曲。为了填补这一空白,探索了低洼视觉地标与健康但高海拔卫星测量之间的互补,以改善几何约束。具体而言,通过滑动窗口优化,将惯性测量单元、前视相机捕获的视觉地标和健康GNSS测量紧密集成在一起,以估计GNSS- rtk浮子解决方案。然后解决了整数模糊和固定GNSS-RTK解。利用在香港城市峡谷收集的多个具有挑战性的数据集验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Navigation-Journal of the Institute of Navigation
Navigation-Journal of the Institute of Navigation ENGINEERING, AEROSPACE-REMOTE SENSING
CiteScore
5.60
自引率
13.60%
发文量
31
期刊介绍: NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.
期刊最新文献
Atom Strapdown: Toward Integrated Quantum Inertial Navigation Systems Navigation Safety Assurance of a KF-Based GNSS/IMU System: Protection Levels Against IMU Failure PRN Sequence Estimation with a Self-Calibrating 40-Element Antenna Array Preliminary Analysis of BDS-3 Performance for ARAIM Development and Validation of a Multipath Mitigation Technique Using Multi-Correlator Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1