Kaihua Tang, Xiao-Nan Hou, Zhiwen Shao, Lizhuang Ma
{"title":"Deep feature selection and projection for cross-age face retrieval","authors":"Kaihua Tang, Xiao-Nan Hou, Zhiwen Shao, Lizhuang Ma","doi":"10.1109/CISP-BMEI.2017.8301986","DOIUrl":null,"url":null,"abstract":"While traditional PIE (pose, illumination and expression) face variations have been well settled by latest methods, a new kind of variation, cross-age variation, is drawing attention from researchers. Most of the existing methods fail to maintain the effectiveness in real world applications that contain significant gap of age. Cross-age variation is caused by the shape deformation and texture changing of human faces while people getting old. It will result in tremendous intra-personal changes of face feature that deteriorate the performance of algorithms. This paper proposed a deep feature based framework for face retrieval problem. Our framework uses deep CNNs feature descriptor and two well designed post-processing methods to achieve age-invariance. To the best of our knowledge, this is the first deep feature based method in cross-age face retrieval problem. The deep CNNs model we use is firstly trained on traditional PIE datasets and then fine-tuned by cross-age dataset. The feature selection and projection post-processing we propose is also proved to be very effective in eliminating cross-age variation of deep CNNs feature. The experiments conducted on Cross-Age Celebrity Dataset (CACD), which is the largest public dataset containing cross-age variation, show that our framework outperforms previous state-of-the-art methods.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"52 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8301986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
While traditional PIE (pose, illumination and expression) face variations have been well settled by latest methods, a new kind of variation, cross-age variation, is drawing attention from researchers. Most of the existing methods fail to maintain the effectiveness in real world applications that contain significant gap of age. Cross-age variation is caused by the shape deformation and texture changing of human faces while people getting old. It will result in tremendous intra-personal changes of face feature that deteriorate the performance of algorithms. This paper proposed a deep feature based framework for face retrieval problem. Our framework uses deep CNNs feature descriptor and two well designed post-processing methods to achieve age-invariance. To the best of our knowledge, this is the first deep feature based method in cross-age face retrieval problem. The deep CNNs model we use is firstly trained on traditional PIE datasets and then fine-tuned by cross-age dataset. The feature selection and projection post-processing we propose is also proved to be very effective in eliminating cross-age variation of deep CNNs feature. The experiments conducted on Cross-Age Celebrity Dataset (CACD), which is the largest public dataset containing cross-age variation, show that our framework outperforms previous state-of-the-art methods.