Directional and Explainable Serendipity Recommendation

Xueqi Li, Wenjun Jiang, Weiguang Chen, Jie Wu, Guojun Wang, Kenli Li
{"title":"Directional and Explainable Serendipity Recommendation","authors":"Xueqi Li, Wenjun Jiang, Weiguang Chen, Jie Wu, Guojun Wang, Kenli Li","doi":"10.1145/3366423.3380100","DOIUrl":null,"url":null,"abstract":"Serendipity recommendation has attracted more and more attention in recent years; it is committed to providing recommendations which could not only cater to users’ demands but also broaden their horizons. However, existing approaches usually measure user-item relevance with a scalar instead of a vector, ignoring user preference direction, which increases the risk of unrelated recommendations. In addition, reasonable explanations increase users’ trust and acceptance, but there is no work to provide explanations for serendipitous recommendations. To address these limitations, we propose a Directional and Explainable Serendipity Recommendation method named DESR. Specifically, we extract users’ long-term preferences with an unsupervised method based on GMM (Gaussian Mixture Model) and capture their short-term demands with the capsule network at first. Then, we propose the serendipity vector to combine long-term preferences with short-term demands and generate directionally serendipitous recommendations with it. Finally, a back-routing scheme is exploited to offer explanations. Extensive experiments on real-world datasets show that DESR could effectively improve the serendipity and explainability, and give impetus to the diversity, compared with existing serendipity-based methods.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Serendipity recommendation has attracted more and more attention in recent years; it is committed to providing recommendations which could not only cater to users’ demands but also broaden their horizons. However, existing approaches usually measure user-item relevance with a scalar instead of a vector, ignoring user preference direction, which increases the risk of unrelated recommendations. In addition, reasonable explanations increase users’ trust and acceptance, but there is no work to provide explanations for serendipitous recommendations. To address these limitations, we propose a Directional and Explainable Serendipity Recommendation method named DESR. Specifically, we extract users’ long-term preferences with an unsupervised method based on GMM (Gaussian Mixture Model) and capture their short-term demands with the capsule network at first. Then, we propose the serendipity vector to combine long-term preferences with short-term demands and generate directionally serendipitous recommendations with it. Finally, a back-routing scheme is exploited to offer explanations. Extensive experiments on real-world datasets show that DESR could effectively improve the serendipity and explainability, and give impetus to the diversity, compared with existing serendipity-based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定向和可解释的意外建议
近年来,机缘推荐越来越受到关注;它致力于提供既能满足用户需求又能开阔用户视野的推荐。然而,现有的方法通常使用标量而不是向量来度量用户-项目相关性,忽略了用户偏好方向,这增加了不相关推荐的风险。此外,合理的解释增加了用户的信任和接受度,但没有工作为偶然的推荐提供解释。为了解决这些限制,我们提出了一种定向和可解释的Serendipity推荐方法,称为DESR。具体而言,我们首先使用基于高斯混合模型的无监督方法提取用户的长期偏好,然后使用胶囊网络捕获用户的短期需求。然后,我们提出了将长期偏好与短期需求结合起来的偶然性向量,并利用它生成有方向性的偶然性推荐。最后,一个反向路由方案被用来提供解释。在现实数据集上的大量实验表明,与现有基于偶然性的方法相比,DESR可以有效地提高偶然性和可解释性,并促进多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1