Modeling and PID control of quadrotor UAV based on machine learning

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2022-01-01 DOI:10.1515/jisys-2021-0213
Lirong Zhou, A. Pljonkin, Pradeep Kumar Singh
{"title":"Modeling and PID control of quadrotor UAV based on machine learning","authors":"Lirong Zhou, A. Pljonkin, Pradeep Kumar Singh","doi":"10.1515/jisys-2021-0213","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this article was to discuss the modeling and control method of quadrotor unmanned aerial vehicle (UAV). In the process of modeling, mechanism modeling and experimental testing are combined, especially the motor and propeller are modeled in detail. Through the understanding of the body structure and flight principle of the quadrotor UAV, the Newton–Euler method is used to analyze the dynamics of the quadrotor UAV, and the mathematical model of the UAV is established under the small angle rotation. Process identifier (PID) is used to control it. First, the attitude angle of the model is controlled by PID, and based on this, the speed in each direction is controlled by PID. Then, the PID control of the four rotor aircraft with the center of gravity offset is simulated by MATLAB. The results show that the pitch angle and roll angle can be controlled by 5 degrees together without center of gravity deviation, and the PID can effectively control the control quantity and achieve the desired effect in a short time. Classical BP algorithm, classical GA-BP algorithm, and improved GA-BP algorithm were trained, respectively, with a total of 150 sets of training data, training function uses Levenberg-Marquardt (trainlm), and performance function uses mean squared error (MSE). In the background of the same noise, the improved GA-BP algorithm has the highest detection rate, classical GA-BP algorithm is the second, and classical BP algorithm is the worst. The simulation results show that the PID control law can effectively control the attitude angle and speed of the rotor UAV in the case of center of gravity deviation.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"17 1","pages":"1112 - 1122"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2021-0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The aim of this article was to discuss the modeling and control method of quadrotor unmanned aerial vehicle (UAV). In the process of modeling, mechanism modeling and experimental testing are combined, especially the motor and propeller are modeled in detail. Through the understanding of the body structure and flight principle of the quadrotor UAV, the Newton–Euler method is used to analyze the dynamics of the quadrotor UAV, and the mathematical model of the UAV is established under the small angle rotation. Process identifier (PID) is used to control it. First, the attitude angle of the model is controlled by PID, and based on this, the speed in each direction is controlled by PID. Then, the PID control of the four rotor aircraft with the center of gravity offset is simulated by MATLAB. The results show that the pitch angle and roll angle can be controlled by 5 degrees together without center of gravity deviation, and the PID can effectively control the control quantity and achieve the desired effect in a short time. Classical BP algorithm, classical GA-BP algorithm, and improved GA-BP algorithm were trained, respectively, with a total of 150 sets of training data, training function uses Levenberg-Marquardt (trainlm), and performance function uses mean squared error (MSE). In the background of the same noise, the improved GA-BP algorithm has the highest detection rate, classical GA-BP algorithm is the second, and classical BP algorithm is the worst. The simulation results show that the PID control law can effectively control the attitude angle and speed of the rotor UAV in the case of center of gravity deviation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的四旋翼无人机建模与PID控制
摘要本文讨论了四旋翼无人机的建模与控制方法。在建模过程中,将机构建模与实验测试相结合,特别是对电机和螺旋桨进行了详细的建模。通过对四旋翼无人机机体结构和飞行原理的了解,采用牛顿-欧拉方法对四旋翼无人机进行动力学分析,建立了四旋翼无人机小角度旋转下的数学模型。进程标识符(PID)用于控制它。首先,对模型的姿态角进行PID控制,在此基础上对各方向的速度进行PID控制。然后,利用MATLAB仿真了四旋翼飞行器在重心偏移情况下的PID控制。结果表明,俯仰角和横摇角可同时控制5度,无重心偏差,PID能有效控制控制量,在短时间内达到预期效果。分别训练经典BP算法、经典GA-BP算法和改进GA-BP算法,共150组训练数据,训练函数采用Levenberg-Marquardt (trainlm),性能函数采用均方误差(MSE)。在相同噪声背景下,改进GA-BP算法的检测率最高,经典GA-BP算法次之,经典BP算法最差。仿真结果表明,该PID控制律能有效控制旋翼无人机在重心偏离情况下的姿态角和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
A study on predicting crime rates through machine learning and data mining using text A multiorder feature tracking and explanation strategy for explainable deep learning Intelligent control system for industrial robots based on multi-source data fusion Reinforcement learning with Gaussian process regression using variational free energy A novel distance vector hop localization method for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1