Theory and simulation of an orthogonal-coil directional beam antenna for biomedical applications

G. Noetscher, S. Makarov, J. Yanamadala, Á. Pascual-Leone
{"title":"Theory and simulation of an orthogonal-coil directional beam antenna for biomedical applications","authors":"G. Noetscher, S. Makarov, J. Yanamadala, Á. Pascual-Leone","doi":"10.1109/IMWS-BIO.2013.6756146","DOIUrl":null,"url":null,"abstract":"Many biomedical applications, including in-body localization, in vivo sensor data acquisition, and measurement of the electrical properties of human tissues require or may greatly benefit from a highly concentrated and directional beam emanating from a transmitting antenna. While many beam focusing efforts have utilized large aperture antennas or large antenna arrays, these methods are not always convenient for biomedical use. Furthermore, sensing modalities operating in the far-field susceptive to multi-path issues related to the many diverse material property interfaces within the human body. This work presents the theoretical background related to the construction and operation of a very small and easily located antenna that generates a highly directive signal ideal for biomedical use. The antenna, constructed from a pair of orthogonally oriented magnetic dipoles excited in quadrature, utilizes the advantages associated with operating in the Fresnel region, directing most of its emitted energy 45 degrees from broadside. Numerical simulations support this operation and have led to a number of applications as identified herein prompting the development of a Finite Element Method compatible human body model based on the Visible Human Project data maintained by the National Institute of Health.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"96 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many biomedical applications, including in-body localization, in vivo sensor data acquisition, and measurement of the electrical properties of human tissues require or may greatly benefit from a highly concentrated and directional beam emanating from a transmitting antenna. While many beam focusing efforts have utilized large aperture antennas or large antenna arrays, these methods are not always convenient for biomedical use. Furthermore, sensing modalities operating in the far-field susceptive to multi-path issues related to the many diverse material property interfaces within the human body. This work presents the theoretical background related to the construction and operation of a very small and easily located antenna that generates a highly directive signal ideal for biomedical use. The antenna, constructed from a pair of orthogonally oriented magnetic dipoles excited in quadrature, utilizes the advantages associated with operating in the Fresnel region, directing most of its emitted energy 45 degrees from broadside. Numerical simulations support this operation and have led to a number of applications as identified herein prompting the development of a Finite Element Method compatible human body model based on the Visible Human Project data maintained by the National Institute of Health.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学用正交线圈定向波束天线的理论与仿真
许多生物医学应用,包括体内定位、体内传感器数据采集和人体组织电性能测量,都需要或可能极大地受益于发射天线发出的高度集中和定向波束。虽然许多波束聚焦工作使用了大孔径天线或大天线阵列,但这些方法并不总是便于生物医学使用。此外,在远场操作的传感模式容易受到与人体内许多不同材料属性接口相关的多路径问题的影响。这项工作介绍了一种非常小且易于定位的天线的构建和操作的理论背景,这种天线可以产生高度定向的信号,非常适合生物医学用途。该天线由一对正交磁偶极子构成,利用了在菲涅耳区域工作的优势,将大部分发射能量从侧面引导45度。数值模拟支持这一操作,并导致了本文所述的许多应用,促使基于国家卫生研究所维护的可见人体项目数据的有限元方法兼容人体模型的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee Organizing committee Fast, compact and label-free electrical detection of live and dead single cells Why headache using GSM cellular phones? An investigation of microwave ablation for bone thermal drilling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1