Integration of Deep Reinforcement Learning and Discrete-Event Simulation for Real-Time Scheduling of a Flexible Job Shop Production

S. Lang, Fabian Behrendt, Nico Lanzerath, T. Reggelin, Marcel Müller
{"title":"Integration of Deep Reinforcement Learning and Discrete-Event Simulation for Real-Time Scheduling of a Flexible Job Shop Production","authors":"S. Lang, Fabian Behrendt, Nico Lanzerath, T. Reggelin, Marcel Müller","doi":"10.1109/WSC48552.2020.9383997","DOIUrl":null,"url":null,"abstract":"The following paper presents the application of Deep Q-Networks (DQN) for solving a flexible job shop problem with integrated process planning. DQN is a deep reinforcement learning algorithm, which aims to train an agent to perform a specific task. In particular, we train two DQN agents in connection with a discrete-event simulation model of the problem, where one agent is responsible for the selection of operation sequences, while the other allocates jobs to machines. We compare the performance of DQN with the GRASP metaheuristic. After less than one hour of training, DQN generates schedules providing a lower makespan and total tardiness as the GRASP algorithm. Our first investigations reveal that DQN seems to generalize the training data to other problem cases. Once trained, the prediction and evaluation of new production schedules requires less than 0.2 seconds.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"142 1","pages":"3057-3068"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The following paper presents the application of Deep Q-Networks (DQN) for solving a flexible job shop problem with integrated process planning. DQN is a deep reinforcement learning algorithm, which aims to train an agent to perform a specific task. In particular, we train two DQN agents in connection with a discrete-event simulation model of the problem, where one agent is responsible for the selection of operation sequences, while the other allocates jobs to machines. We compare the performance of DQN with the GRASP metaheuristic. After less than one hour of training, DQN generates schedules providing a lower makespan and total tardiness as the GRASP algorithm. Our first investigations reveal that DQN seems to generalize the training data to other problem cases. Once trained, the prediction and evaluation of new production schedules requires less than 0.2 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性作业车间生产实时调度的深度强化学习与离散事件仿真集成
本文介绍了深度q网络(Deep Q-Networks, DQN)在求解具有集成工艺规划的柔性作业车间问题中的应用。DQN是一种深度强化学习算法,旨在训练智能体执行特定任务。特别地,我们训练了两个DQN代理,并与问题的离散事件仿真模型相连接,其中一个代理负责选择操作序列,而另一个代理负责将工作分配给机器。我们比较了DQN和GRASP元启发式算法的性能。在不到一个小时的训练后,DQN生成的时间表与GRASP算法一样具有更低的完工时间和总延迟时间。我们的初步调查表明,DQN似乎可以将训练数据推广到其他问题案例。一旦训练,新的生产计划的预测和评估需要不到0.2秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Précis: The Emotional Mind: The Affective Roots of Culture and Cognition Emotional Correctness Robot Collaboration Intelligence with AI Evaluation and Selection of Hospital Layout Based on an Integrated Simulation Method A Simheuristic Approach for Robust Scheduling of Airport Turnaround Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1