Improving the Efficiency of Heart Disease Prediction Using SVM and a Novel Tree Specific Random Forest Classifier (NTSRF)

P. Harish, Dr.R. Sabitha
{"title":"Improving the Efficiency of Heart Disease Prediction Using SVM and a Novel Tree Specific Random Forest Classifier (NTSRF)","authors":"P. Harish, Dr.R. Sabitha","doi":"10.47059/alinteri/v36i1/ajas21087","DOIUrl":null,"url":null,"abstract":"Aim: The objective of the work is to evaluate the accuracy and precision in predicting the heart disease using Support Vector Machine (SVM) and Random Forest (RF) classification algorithms. Materials and Methods: Random Forest Classifier is applied on a Health dataset that consists of 304 records. A framework for heart disease prediction in the medical sector comparing Random Forest and SVM classifiers has been proposed and developed. The sample size was measured as 21 per group. The accuracy and the precision of the classifiers was evaluated and recorded. Results: The SVM classifier produces 53.04% in predicting the heart disease on the data set used whereas the Random forest classifier predicts the same at the rate of 83.2%. The significant value is 0.0. Hence RF is better than SVM. Conclusion: The performance of Random forest is better compared with SVM in terms of both precision and accuracy.","PeriodicalId":42396,"journal":{"name":"Alinteri Journal of Agriculture Sciences","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alinteri Journal of Agriculture Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47059/alinteri/v36i1/ajas21087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The objective of the work is to evaluate the accuracy and precision in predicting the heart disease using Support Vector Machine (SVM) and Random Forest (RF) classification algorithms. Materials and Methods: Random Forest Classifier is applied on a Health dataset that consists of 304 records. A framework for heart disease prediction in the medical sector comparing Random Forest and SVM classifiers has been proposed and developed. The sample size was measured as 21 per group. The accuracy and the precision of the classifiers was evaluated and recorded. Results: The SVM classifier produces 53.04% in predicting the heart disease on the data set used whereas the Random forest classifier predicts the same at the rate of 83.2%. The significant value is 0.0. Hence RF is better than SVM. Conclusion: The performance of Random forest is better compared with SVM in terms of both precision and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SVM和新型树特异性随机森林分类器(NTSRF)提高心脏病预测效率
目的:评价支持向量机(SVM)和随机森林(RF)分类算法在心脏病预测中的准确性和精密度。材料和方法:对包含304条记录的健康数据集应用随机森林分类器。提出并开发了一个比较随机森林和支持向量机分类器的医疗部门心脏病预测框架。每组的样本量为21人。对分类器的准确度和精密度进行了评估和记录。结果:SVM分类器在使用的数据集上预测心脏病的准确率为53.04%,而随机森林分类器的准确率为83.2%。显著值为0.0。因此,RF优于SVM。结论:随机森林在精密度和准确度上都优于支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Alinteri Journal of Agriculture Sciences
Alinteri Journal of Agriculture Sciences AGRICULTURE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
6
期刊最新文献
Efficacy of Senna Leaves Extract and Rosuvastatin on Blood Parameters of Inducing Hyperlipidemia Laboratory Rats The Response of Growth and Yield of Sweet Pepper (Capsicum Annuum) to the Spraying with Nano-amino Acids and Potassium Silicate Effect of Organic Fertilization with Humic Acid and Foliar Spraying with Bread Yeast Extract on the Growth and Yield of the Solanum Melongena L The Effect of different Types of Organic Fertilizers on the Growth and Yield of Vegetable Plants Risk Management and Operational Performance of Hospitality Enterprises – A Case Study in the North Central Region of Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1