Automated conformance testing for JavaScript engines via deep compiler fuzzing

Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xiaoyang Sun, Lizhong Bian, Haibo Wang, Zheng Wang
{"title":"Automated conformance testing for JavaScript engines via deep compiler fuzzing","authors":"Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xiaoyang Sun, Lizhong Bian, Haibo Wang, Zheng Wang","doi":"10.1145/3453483.3454054","DOIUrl":null,"url":null,"abstract":"JavaScript (JS) is a popular, platform-independent programming language. To ensure the interoperability of JS programs across different platforms, the implementation of a JS engine should conform to the ECMAScript standard. However, doing so is challenging as there are many subtle definitions of API behaviors, and the definitions keep evolving. We present COMFORT, a new compiler fuzzing framework for detecting JS engine bugs and behaviors that deviate from the ECMAScript standard. COMFORT leverages the recent advance in deep learning-based language models to automatically generate JS test code. As a departure from prior fuzzers, COMFORT utilizes the well-structured ECMAScript specifications to automatically generate test data along with the test programs to expose bugs that could be overlooked by the developers or manually written test cases. COMFORT then applies differential testing methodologies on the generated test cases to expose standard conformance bugs. We apply COMFORT to ten mainstream JS engines. In 200 hours of automated concurrent testing runs, we discover bugs in all tested JS engines. We had identified 158 unique JS engine bugs, of which 129 have been verified, and 115 have already been fixed by the developers. Furthermore, 21 of the COMFORT-generated test cases have been added to Test262, the official ECMAScript conformance test suite.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

JavaScript (JS) is a popular, platform-independent programming language. To ensure the interoperability of JS programs across different platforms, the implementation of a JS engine should conform to the ECMAScript standard. However, doing so is challenging as there are many subtle definitions of API behaviors, and the definitions keep evolving. We present COMFORT, a new compiler fuzzing framework for detecting JS engine bugs and behaviors that deviate from the ECMAScript standard. COMFORT leverages the recent advance in deep learning-based language models to automatically generate JS test code. As a departure from prior fuzzers, COMFORT utilizes the well-structured ECMAScript specifications to automatically generate test data along with the test programs to expose bugs that could be overlooked by the developers or manually written test cases. COMFORT then applies differential testing methodologies on the generated test cases to expose standard conformance bugs. We apply COMFORT to ten mainstream JS engines. In 200 hours of automated concurrent testing runs, we discover bugs in all tested JS engines. We had identified 158 unique JS engine bugs, of which 129 have been verified, and 115 have already been fixed by the developers. Furthermore, 21 of the COMFORT-generated test cases have been added to Test262, the official ECMAScript conformance test suite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度编译器模糊测试对JavaScript引擎进行自动化一致性测试
JavaScript (JS)是一种流行的、独立于平台的编程语言。为了确保JS程序在不同平台上的互操作性,JS引擎的实现应该符合ECMAScript标准。然而,这样做是具有挑战性的,因为API行为有许多微妙的定义,而且这些定义还在不断发展。我们提出了COMFORT,一个新的编译器模糊测试框架,用于检测JS引擎错误和偏离ECMAScript标准的行为。COMFORT利用基于深度学习的语言模型的最新进展来自动生成JS测试代码。与之前的fuzzers不同,COMFORT利用结构良好的ECMAScript规范来自动生成测试数据以及测试程序,以暴露开发人员或手动编写的测试用例可能忽略的错误。然后COMFORT对生成的测试用例应用不同的测试方法,以暴露标准一致性错误。我们将COMFORT应用于10个主流JS引擎。在200小时的自动化并发测试运行中,我们发现了所有被测试JS引擎中的bug。我们发现了158个独特的JS引擎bug,其中129个已经被验证,115个已经被开发者修复。此外,comfort生成的21个测试用例已经添加到Test262(官方ECMAScript一致性测试套件)中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning to find naming issues with big code and small supervision Cyclic program synthesis Fluid: a framework for approximate concurrency via controlled dependency relaxation Bliss: auto-tuning complex applications using a pool of diverse lightweight learning models Phased synthesis of divide and conquer programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1